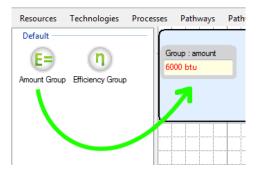


# Introduction to the new GREET platform

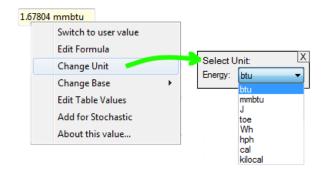
**Vadim Sokolov** 

Energy Systems Division
Argonne National Laboratory
September 21, 2012




## **Outline**

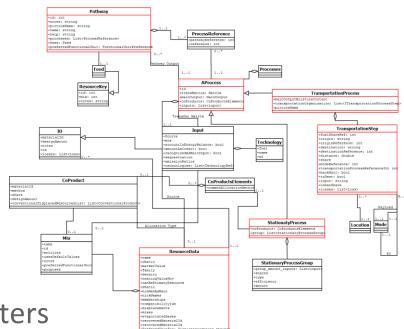
- Overview (Present, Future)
- Model
- User Community




# Why the new platform?

- Easy to use
  - Graphical data editors
  - Search by object name
  - Navigation through links
- Not bound by capabilities of Excel
  - Automated integrity checks
  - Automated unit conversions
  - Automated dimensions normalization
  - Automated quality control
  - Result exporting feature
  - Reporting capabilities




| Monitoring - Energy All<br>Included | Total Fuel      |  |  |
|-------------------------------------|-----------------|--|--|
| Mean Value                          | 1.0643132 mmbtu |  |  |
| Tolerence                           | 0.5 %           |  |  |
| Functional Unit                     |                 |  |  |
| Simulation Run 1                    | 1.0643441 mmbtu |  |  |
| Simulation Run 2                    | 1.0912549 mmbtu |  |  |



#### What is the new GREET?

#### **Two Major Separate Components:**

- 1. Database (an XML file)
  - Model data
  - Images
  - User preferences
  - Unit system conversion parameters



#### 2. Software

- Uses database as an input
- Graphical User Interface
- Implements the underlying model logic
- Implements the relations between database objects

#### Where we are

#### Database:

- Replicates the data in GREET\_1\_2011
- Some updates from GREET\_1\_2012 has been ported
- All of the 2012 modifications are being ported
- In the future the new GREET database is to become default

#### Software

- Allows same operations as Excel version
- In the future more features to be added

#### Documentation

- Quick start guide
- User guide
- Model description

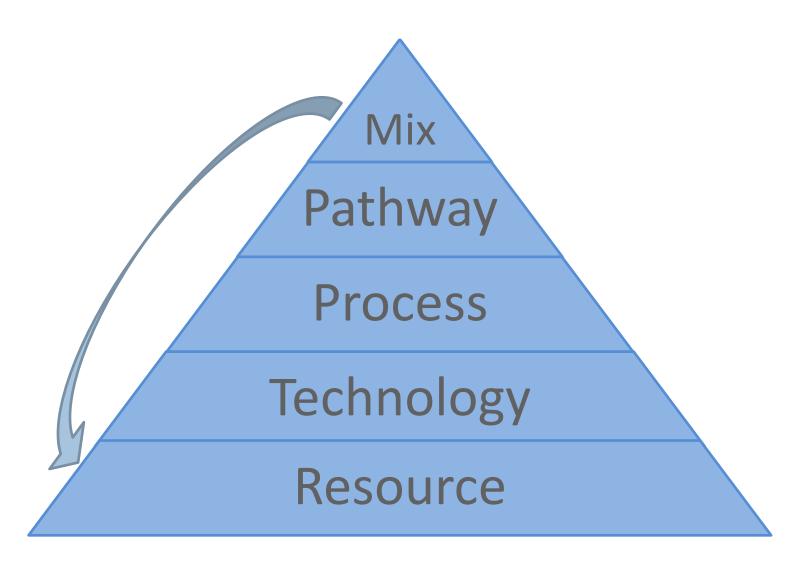


#### **Documentation**

#### Getting started guide:

- Key concepts
- Step-by-step pathway creation process
- User guide:
  - Download and Installation
  - Updating
  - All of the GUI features

- Model guide: mathematical model used in GREET is described
  - Sulfur and carbon balance
  - Upstream calculations
  - Stationary process
  - Stationary process efficiency
  - Transportation process
  - Pump To Wheel




## Updates to Data and Software

- Data and Software updates are pushed separately
  - Data includes all of the input parameters (processes, pathways, technologies, etc.) and some user preferences
  - Software includes graphical interface and mathematical model
- Software updates do not affect data and vice versa
- Updates are pushed automatically and require user's consent
- User's changes are always stored in a separate database on the user's machine
- Default data is always backed up on before a data update and can be reverted to if needed



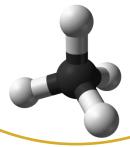
# **Modeling Approach**





## Resources

Fuels (liquid, solid, gas)






Electricity









- Natural Gas
- Diesel

• • •







- Wind
  - Solar
  - Geothermal

. . .

- Uranium Ore
- Fertilizers

The new Greet. Greet workshop. September 21, 2012

0 0 0

## **Primary Resources**

- A primary resource is a one which is given by nature.
- Processing is not required
- Primary Resource = no upstream (e.g. from well)
- All Fossil resources
- Renewable resources
- Corn, soy beans and biomass are not primary resources. They require farming (solar energy is used as a "proxy" for energy content of the product)



Solar

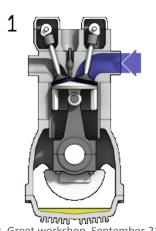


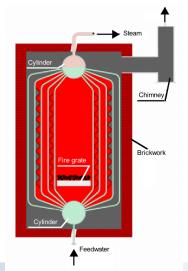
Wind



Coal




CH4


The new Greet. Greet workshop. September 21, 2012

**Uranium Ore** 

## **Technologies**

- Technologies include boilers, engines, turbines, etc.
- Technologies are used to trace emissions (as a result of combustion or chemical reaction)
- Each technology is associated with a fuel (resource)
- Each technology has a list of emission factors (VOC, CO, NO<sub>x</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, SO<sub>x</sub>, CH<sub>4</sub>, CO<sub>2</sub>, N<sub>2</sub>O)
- Emission factors can be defined as a time series



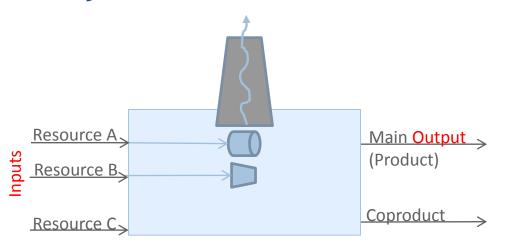




The new Greet. Greet workshop. September 21, 2012

#### **Processes**

- Process: Inputs (Resources) + Technologies → Outputs
- Names are analogous to what they represent
- Transportation and Stationary are represented differently
- Emissions are generated by process technologies and/or losses

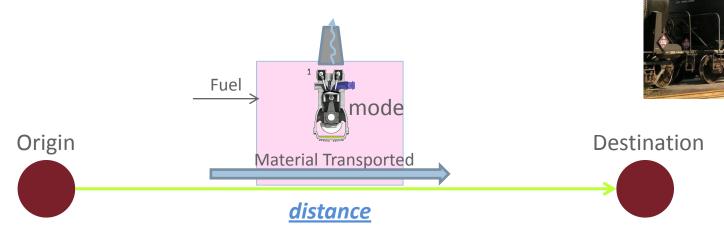



Stationary



Transportation

## **Stationary Process**



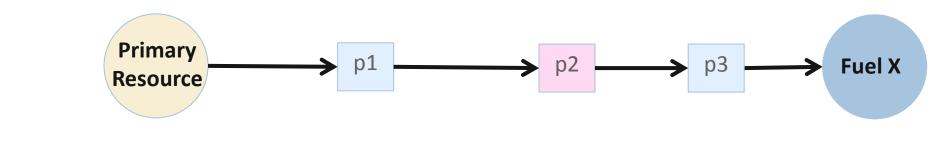


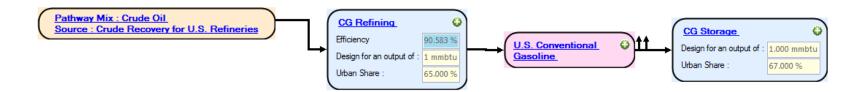

- A process input amount requirements can be specified in several ways
  - Requirement for each individual input
  - Efficiency plus energy shares for each of the inputs (legacy)
  - Combination
- Resources with no energy content are supported (Agricultural Inputs, Uranium Ore, etc.)
- A technology need to be specified for an energy input in order to account for emissions



## **Transportation Process**

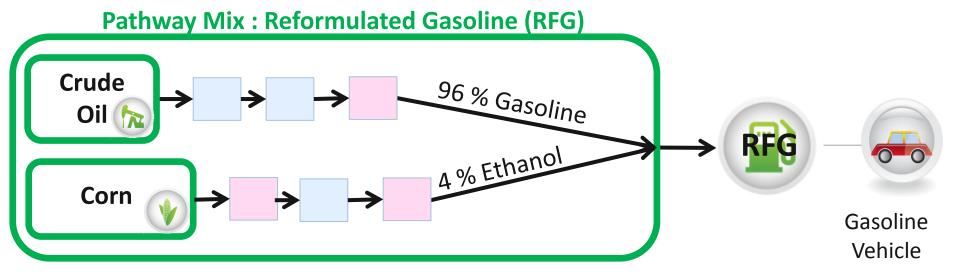



- Transportation process consists of transportation steps
- Transportation Step = mode + mode share + distance
- Several technologies can be specified for a transportation mode
- Five modes of transportation includes with support for user defined modes

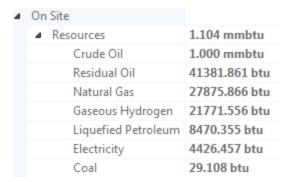





# Pathways: Series of steps for fuel production


- Pathway are series of Processes
- I/O of a Pathway is defined by it's first and last process

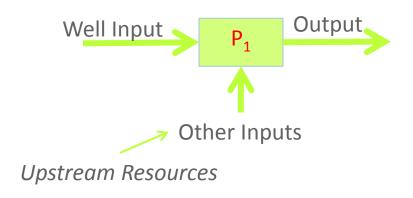







# **Pathway Mix**



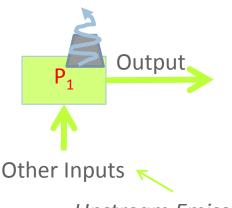





#### For P<sub>1</sub>:

On-Site Resources = Well Input + Other Inputs (without upstream)








Life Cycle Resources = Well Input + Other Inputs (with upstream)



**On-Site Emissions** 



Fo

|                                                                                                                 |                        | _          |
|-----------------------------------------------------------------------------------------------------------------|------------------------|------------|
| Output                                                                                                          | PM10                   | 6.010 g    |
| P <sub>1</sub>                                                                                                  | PM2.5                  | 3.191 g    |
|                                                                                                                 | SOx                    | 19.347 g   |
|                                                                                                                 | CH4                    | 139.411 g  |
| The second se | N2O                    | 182.653 mg |
| - · ·                                                                                                           | CO2                    | 14.422 kg  |
| Other Inputs 🦟                                                                                                  | CO2C                   | 14.463 kg  |
|                                                                                                                 | ■ Groups               |            |
| Upstream Emissions                                                                                              | Criteria Pollutant     | 82.048 g   |
|                                                                                                                 | Emission Gas           | 29.107 kg  |
|                                                                                                                 | From Combustion        | 29.107 kg  |
|                                                                                                                 | Non-Balanced Vehicle   | 202.294 g  |
| For P <sub>1</sub> :                                                                                            | Upstream Emission      | 14.644 kg  |
|                                                                                                                 | Greenhouse Gas         | 18.003 kg  |
| Life Cycle Emissions - On Site Emissions L Unstream Emissions for C                                             | Atla a vi li a va vita |            |
|                                                                                                                 |                        |            |

■ Life Cycle

■ Emissions

VOC

CO

NOx

7.600 g

10.943 g 34.957 g

Life Cycle Emissions = On-Site Emissions + Upstream Emissions for Other Inputs



On-Site Emissions

Well Input
P<sub>1</sub>
Output
Other Inputs

Upstream Resources
Upstream Emissions

#### For P<sub>1</sub>:

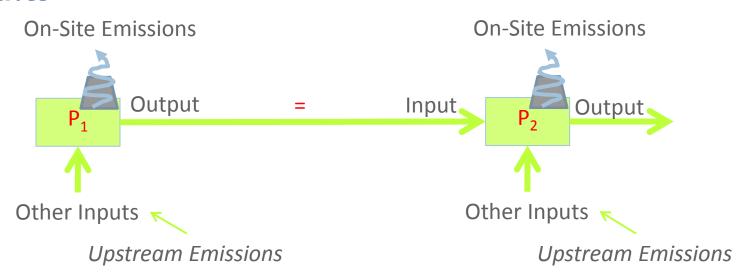
- On-Site Resources = Well Input + Other Inputs (without upstream)
- Life Cycle Resources = Well Input + Other Inputs (with upstream)
- Life Cycle Emissions = On-Site Emissions + Upstream Emissions for Other Inputs





#### For P<sub>2</sub>:

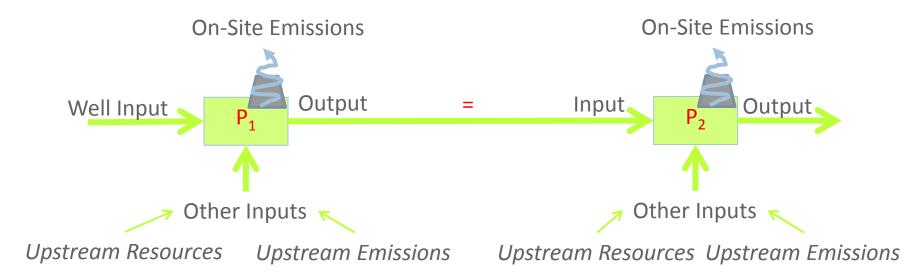
• On-Site Resources = Main Input  $(P_1 \text{ Output})$  + Other Inputs (without upstream)






#### For P<sub>2</sub>:

• Life Cycle Resources = Life Cycle Resources of  $P_1$ + Other Inputs (with upstream)






For  $P_2$ :

Life Cycle Emissions = Life Cycle Emissions of P<sub>1</sub> + On-Site Emissions +

+ Upstream Emissions for Other Inputs



#### For $P_1$ :

- On-Site Resources = Well Input + Other Inputs (without upstream)
- Life Cycle Resources = Well Input + Other Inputs (with upstream)
- Life Cycle Emissions = On-Site Emissions + Upstream Emissions for Other Inputs

#### For $P_2$ :

- On-Site Resources = Main Input ( $P_1$  Output) + Other Inputs (without upstream)
- Life Cycle Resources = Life Cycle Resources of P₁+ Other Inputs (with upstream)
- Life Cycle Emissions = Life Cycle Emissions of P<sub>1</sub> + On-Site Emissions +
  - + Upstream Emissions for Other Inputs



## **Result Groups**

#### **Emissions**

- Greenhouse Gas
- Criteria Pollutant
- From Combustion
- Other (Non-Combustion) Emissions
- Upstream Emissions

| <b>▲</b> Emissions         |            |
|----------------------------|------------|
| VOC                        | 6.434 g    |
| CO                         | 10.626 g   |
| NOx                        | 33.678 g   |
| PM10                       | 5.953 g    |
| PM2.5                      | 3.157 g    |
| SOx                        | 19.123 g   |
| CH4                        | 138.852 g  |
| N2O                        | 176.552 mg |
| CO2                        | 14.162 kg  |
| CO2C                       | 14.199 kg  |
| ■ Groups                   |            |
| Criteria Pollutant         | 78.972 g   |
| Emission Gas               | 28.579 kg  |
| From Combustion            | 28.579 kg  |
| Non-Balanced Vehicle Emiss | 198.877 g  |
| Upstream Emission          | 14.380 kg  |
| Greenhouse Gas             | 17.723 kg  |

#### Energy

- By Primary Resource
  - Fossil Fuel
  - Coal
  - Natural Gas
  - Renewable
  - Petroleum
  - Biomass

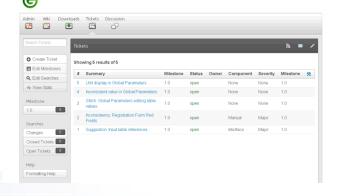
| Δ | Resources                   | 1.169 mmbtu   |
|---|-----------------------------|---------------|
|   | Crude Oil                   | 1.057 mmbtu   |
|   | Natural Gas                 | 91112.427 btu |
|   | Coal                        | 12998.849 btu |
|   | Bituminous Oil              | 4912.265 btu  |
|   | Nuclear Energy              | 1950.149 btu  |
|   | Hydroelectric Power         | 623.422 btu   |
|   | Wind Power                  | 221.130 btu   |
|   | Forest Residue              | 107.437 btu   |
|   | GeoThermal Power            | 40.688 btu    |
|   | Renewable (Solar, Hydro, Wi | 36.265 btu    |
|   | Solar                       | 3.538 btu     |
|   | Uranium Ore                 | 19.489 mg     |
|   | Herbaceous Biomass (Switch  | 0.000 btu     |
|   | Farmed Trees                | 0.000 btu     |
| Δ | Groups                      |               |
|   | Fossil Fuel                 | 1.166 mmbtu   |
|   | Petroleum Fuel              | 1.062 mmbtu   |
|   | Natural Gas Fuel            | 91112.427 btu |
|   | Coal Fuel                   | 12998.849 btu |
|   | Non Fossil Fuel             | 2982.629 btu  |
|   | Nuclear                     | 1950.149 btu  |
|   | Renewable                   | 1032.480 btu  |
|   |                             |               |

# Pathway and Pathway Mix (Skip)

- Upstream values of a product produced by a pathway is defined by Life Cycle values of the last process
- Upstream of a product produces by a pathway mix is defined by weighted average values of the corresponding pathways
- Each product for which a pathway or pathway mix is defined has upstream

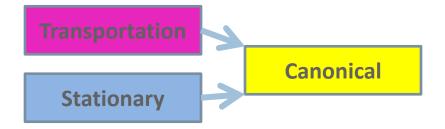


## **Future Developments**


- Port 2012 data updates (near future)
- Reporting tools
- More flexible process model?
- Demand driven development of new features
- Public release by the end of 2012

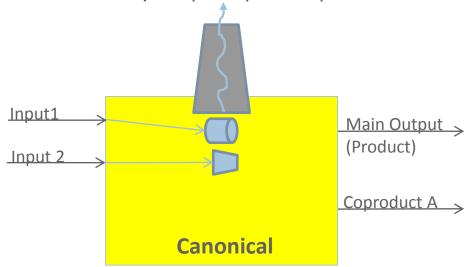


## **User Community**


- Community driven support through user interaction via mailing list
  - A user may elect to subscribe/unsubscribe to the list
- The mailing list will be helpful as the first step in requesting for help
- Other users are able to reply to help requests
  - Archives are available to everyone and can be searched for previously asked questions
- Users interact with developers through issue tracker for bug reporting and features requests

greet.es.anl.gov/greet/support




## **Canonical Process**

 Both transportation and Stationary Types of process are converted into a canonical from inside



#### **Canonical Process**

The Canonical Process has a very simple input-output form



Energy Balance (emissions calculated similarly):

$$E = \frac{E(I) - E(Copr) - E(Credit)}{a(f_O)(1 - l_r(f_O))}$$

$$E(I) = \sum_{f \in I} E(f)$$
$$E(f) = a(f)E_{up}(f)$$



#### **Canonical Process**

Energy Balance:

$$E_b = \frac{E(I) - E(Copr) - E(Credit)}{a(f_O)(1 - l_r(f_O))}$$

Emissions Balance

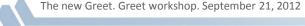
$$\frac{Em(I) - Em(Copr) - Em(Credit)}{a(f_O)(1 - l_r(f_O))} + l_r(f_O)Em_s(f_O)$$

Balance = units of input per functional unit of output



# Conversion of Stationary Process Defined by Efficiency

Defined by efficiency


$$\eta = \frac{a(f_O)}{\sum_{f_i \in G} a(f_i)}$$
 
$$a(f_O) = \frac{a(f_O)}{\eta} = \sum_{f_i \in G} a(f_i)$$
 
$$a(f_i) = \frac{a(f_O)}{\eta} = \sum_{f_i \in G} a(f_i)$$
 
$$a(f_i) = \frac{a(f_O)}{\eta}$$
 Process inputs

The set of inputs within the group for which the amount is defined

$$\hat{a}(G) = a(G) - \sum_{f \in G_1} a(f)$$

The rest of the input amounts are defined by shares

$$a(f) = s(f)\hat{a}(G), \text{ for } f \in G - G_1$$



## **Transportation Process**

- Defined by a transportation steps
- Each step has a transportation mode, distance and share defined
- Each mode has 3 parameters defined
  - Energy Intensity  $\left[\frac{J}{kg \times m}\right]$ 
    - Calculated for Ocean Tanker, Barge, Truck and an input for Pipeline and Rail
  - Process fuel (fuel used to propel an engine)
  - Emissions factors for each process fuel
- Amount of fuel required by a mode is calculated by

$$a(f) = ei(mode) \times distance \times sahre$$



#### **Canonical Process Calculations**

- Two vectors are calculated:
  - Energy
  - Emissions
- Energy balance vector contains an energy amount associated with each of the basic resource
- Emissions balance vector contains the amount of each criteria pollutant



### Sulfur and Carbon Balance

If the SOx emission factor is not specified as an input for a technology

$$ef(f, SOx) = \frac{\rho(f)}{hv(f)} \frac{sratio(f)}{sratio(SO_2)}$$

An equivalent formula for calculating the \$CO\_2\$ emission factor

$$ef(f,CO_2) = \frac{1}{crato(CO_2)} \left[ \frac{\rho(f)crato(f)}{hv(f)} - \left( ef(f,VOC)crato(VOC) + ef(CO)crato(CO) + ef(CH_4)crato(CH_4) \right) \right]$$