

Introduction to Algal Fuel LCA in GREET1_2011

Edward Frank, Michael Wang, Jeongwoo Han, Amgad Elgowainy, and Ignasi Palou-Rivera

> Center for Transportation Research Argonne National Laboratory

> > **GREET Workshop**

Argonne, IL Dec. 7-8, 2011

Plan

- Introduction and motivation
- Architecture and workflow
- 🖵 Demo #1
 - Examining pre-configured pathway: Basics
 - Details to be covered by Jeongwoo separately
 - Where to find results and highest level configuration
 - Quick tour of APD worksheets
- Key concepts in APD
- 🖵 Demo #2
 - Nutrients
 - Configure a new model and run it

Supporting Documents: LCA Report and User Manual

Available at http://greet.es.anl.gov/publications

Argonne	ANL/ESD/11-5
Life-Cycle Analysis of Algal Lipid Fuels with the GREET Model	Argonne Anl/ESD/11-7
Energy Systems Division	User Manual for Algae Life-Cycle Analysis with GREET: Version 0.0
	Energy Systems Division

Motivation and Architecture

- Can algal biofuels meet GHG reduction goals?
 - Must compare to other transportation pathways
- Challenges for algae LCAs
 - Many algae scenarios & process options
 - Facilitate community LCAs
- □ Algae Process Description (APD)
 - Assists GREET
 - Allows rapid definition of pathway
 - New processes easy to add
 - Assembles model and passes back to GREET for LCA

APD

- System definition
- Technology selection
- Direct energy for op's
- Performance parameters
- Nutrient tools

GREET

- Co-product treatment
- Transport & distribution
- Upstream treatment
- Fuel and vehicle
- Results

What You Can Do with GREET and APD

- □ Assemble algae production model from process inventory
- Compute total energy use
 - Fossil: petroleum, natural gas, and coal
 - Renewable energy: biomass, nuclear, hydro, wind, and solar
- Compute total greenhouse gases (GHGs)
 - \succ CO₂, CH₄, and N₂O individually
 - CO₂e of the three including C in CO and VOC
- Compute total criteria pollutants
 - \succ VOC, CO, NO_x, PM₁₀, PM_{2.5}, and SO_x
- Study many vehicle/fuel systems
- Compare algae results with many other feedstocks, fuels, and vehicles

Algae LCA System Boundary

System boundary currently excludes infrastructure materials and land-use change

Pre-configured Pathway- See Reports for Details

- Low-A: Catalytic hydrothermal gasification rather than AD
 - Low-B: Different performance parameters

Fossil Energy and GHG Results

□ Baseline scenario has significant GHG reduction

- Accurate treatment of recovery (AD, CHP) is essential
 - 128,000 BTU-electricity imported (fossil) per mmBTU of biofuel
 - Would be 514,000 BTU-electricity without AD recovery
 - ➢ 76% of N and 100% of P recovered

Two Possible Workflows

- 1) Study pre-configured algae pathway
 - Three options configured in GREET
 - See Technical Report for detailed description
- 2) Define Custom Algae Pathways
 - Change unit-operation parameters in default configuration
 - Choose different unit-operations

Workflow for Pre-configured Pathway

- Set feedstock in Sec. 8.1 to, "algae."
- Consider share in BD, Sec. 11.1
- Co-product treatment, transportation
- Vehicle and fuel

All work is performed in GREET

Workflow for Custom Pathway

Demonstration 1

- Examining pre-configured pathway: Basics
 - > Details to be covered by Jeongwoo separately
 - Crucial configuration
 - Where to find results
- Quick tour of APD
 - > Organization: Worksheets
 - Process selection, process parameters, process description
 - "Copy to GREET" operation including GREET1_2011 location

Key Concepts in APD

WTP, PTW, WTW Definitions for Algae

Well-to-Pump (WTP)	Pump-to-Wheels
Well-to-Wheels (WTW)	

Process Description

- Each process is described by three blocks:
- 1) Linkage block
 - Describes key outputs
- 2) Materials block
 - Direct material consumption
- 3) Process fuels
 - Direct energy consumption

"Per gram output"

Dry-gram algae out of operation

	1.1
Input per unit output	
Recoverable CO2, g/g product	Î.
Mass to recovery, dry-g/g produ	4
Materials consumed, g per	
unit output except as noted	_
Methanol	
Sodium hydroxide	
Hexane	
Ethanol	\$
None	
Energy consumed: KWh/g-	
output except as noted	_
Residual oil	
Diesel fuel	
Gasoline	
Natural gas	
Coal	
Liquefied petroleum gas	
Electricity	
Site thermal	
Site Electricity	

Block 1: Linkage block

Block 2: Material inputs

Block 3: Process fuel inputs

Linkage Block

Input per unit output

> Enables chaining unit-operations into a pathway

Worksheet Name	Meaning of Input per Output Value
CO ₂	Not used
Growth and 1 st Dewater	Grams of CO $_2$ per gross dry-gram of algae grown
Remaining Dewatering	Dry-gram of algae required to produce one dry-gram of dewatered algae
Extraction	Dry-gram of dewatered algae required to produce one gram of extracted lipids
Recovery	Not used; material and fuel consumption are per dry-gram of material sent to Recovery

 \Box Recoverable CO₂

 \blacktriangleright Accounts for CO₂ that can be returned to culture

- \succ Example: CO₂ in CHP flue gas
- Mass to recovery
 - Describes flows to biogas production on dry-gram basis
 - > Example: Residues after lipid extraction

	1
Input per unit output	
Recoverable CO2, g/g product	
Mass to recovery, dry-g/g produ	4
Materials consumed g por	T
unit output except as noted	-
Methanol	
Sodium hydroxide	
Hexane	
Ethanol	\$
None	
Energy consumed: KWh/g-	
output except as noted	
Residual oil	
Diesel fuel	
Gasoline	
Natural gas	
Coal	
Liquefied petroleum gas	
Electricity	
Site thermal	
Site Electricity	

Site-Electricity and Site-Thermal

On-site combined heat and power (CHP) allows energy recovery

- Model must flag inputs as "site" if they can be satisfied from CHP
- On-site pump electricity consumption
 - Example of Site-electricity
- Regional extraction center electricity consumption
 - Example of "Electricity"

Energy Units

All energy consumptions are in KWh

Electrical

> Fuels (NG, coal, etc.)

Specify gross energy consumed

> Example: 3412 BTU of NG *input* to a boiler would be 1 KWh NG

Site-thermal

- Odd-ball: Specify <u>net</u> heat
- Example: 3412 BTU *output* from a boiler would be 1 KWh site-thermal

Example: Centrifuge

A centrifuge requires 3.29e-3 KWh per liter influent containing 10 wt% algae. 95% of the algae are recovered, the balance going to anaerobic digestion.

Input per output = (1 dry g algae in)/(0.95 g algae out) = 1.05
Mass to recovery = 1.05 grams in - 1.0 grams out = 0.05 g

- \geq Recovered CO₂ = 0
- Site electricity = (3.29e-3 KWh/L) / (95 dry-g Algae out per L) = 3.45e-5 KWh/dry-g algae

Demonstration 2

Nutrient tools

- What they do
- How they connect to GREET

Configure a new process and run it

- Modify extraction: regional center
- Data from Xu et al.

Acknowledgment

This project is funded by the Biomass Program of DOE's Office of Energy Efficiency and Renewable Energy. We thank Joyce Yang and Zia Haq of that Program for their support and inputs.

Contacts

Dr. Ed Frank: efrank@anl.gov Dr. Michael Wang: mqwang@anl.gov

Additional Slides

Pathway Abstraction in APD

Organizes process inventory, accounting, and reporting
Helps user know where to plug-in and set parameters

APD Example: Process Selection for Dewatering

				<i>u</i>			
	Net-Process Summary		Step 1	Step 2	Step 3	Step 4	
		Summary of remain- ing de- watering	Dissolved Air Flotation	Centrifuge	None	None	
	Input per unit output	1.235E+00	1.11E+00	1.11E+00	1.00E+00	1.00E+00	
	Recoverable CO2, g/g produ	0.000E+00	0.00E+00	0.00E+00	0.00E+00	0.005+00	
	Mass to recovery, dry-g/g pro-	2.346E-01	1.11E-01	1.11E-01	0.00E+00	0.00E+00	
	Materials consumed, g per unit output except as noted		0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	Chitosan	1.111E-02	1.000E-02	0.000E+00	0.000E+00	0.000E+00	
	None 🗧	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	— Drop-down
	None	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	for process
	None	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	Tor process
	None	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	selection
	None	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	None	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Drop-do	wn ,	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
for moto	vrial ¹	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
IOI IIIate		0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
selection	n P	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Sciection	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	None	+	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	None	0.000E+00	0.0005+00	0.000E+00	0.000E+00	0.000E+00	
	None	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	Energy consumed: KWh/g- output except as noted		0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	Residual oil	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	-
	Diesel fuel	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	Tan summary
	Gasoline	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	,
	Natural gas	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	copied back
	Coal	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	Liquefied petroleum gas	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	LO GREET
	Electricity	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
	Site thermal	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	24
	Site Electricity	3.454E-03	1.478E-04	3.290E-03	0.000E+00	0.000E+00	
			- U				

Details for the Baseline Scenario Model

Growth, Harvest, and Extraction

GREET: Co-Product Handling is a Key Issue

- Three Pathways Possible
- □ Five processes with co-products
- □ Five co-products from algae

GREET Workshop at Argonne Dec. 7-8

Nutrient Flow Accounting

