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Introduction

« Climate Impacts of International Shipping @ MISSION
— Shipping emissions account for ~3.1% of annual global CO2 and
& -2 INNOVATION

approximately 2.8% of annual GHGs (IMO 2014)
— Smith et al. (2015) estimate that ship CO, emissions will increase 50%
to 250% from 2012 to 2050

* Pressure to reduce carbon intensity of shipping Denmark, Norway, and the United States
— IMO framework to reduce carbon intensity (CO2 per ton-mile) by 40%
for new ships by 2030 and 70% by 2050, relative to 2008
— IMO goal to reduce GHG emission from international shipping by 50%
in 2050, relative to 2008

to Lead Zero-Emission Shipping Mission

— Peak GHG emissions as soon as possible, with complete Maersk calls on carbon tax for fossil
decarbonization attained by the end of century fuel bunkers to bridge transition gap
* Broad support for maritime decarbonization across public and
p rivate e ntities Maersk calls for 8 5450 per ton fuel carbon tex on fossil fuel-based fuels

Plans to power carbon-neutral methanol vessel by 2023

— Maersk, the worlds largest container shipping company, has pledged to
achieve net zero carbon emissions by 2050 and is pursuing the
deployment of carbon-neutral vessels by 2030

— A growing number of maritime decarbonization initiatives 1. httpsy//www.energy.gov/eere/articles/denmark-norway-and-united-states-lead-zero-emission-shipping-mission

2. https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/060221-maersk-calls-on-carbon-
tax-for-fossil-fuel-bunkers-to-bridge-transition-gap

Cost, supply concerns remain key for methancl bunker uptake
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Alternative Fuels For Marine Shipping

e Situation complicated by many competing options o
and constraints
— Extremely slim operating margins
— Alternatives include expanded use of distillates, LNG,
LPG, DME, methanol, ammonia, hydrogen, e-Fuels, [
biofuels, and employing air pollution control
technologies
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Alternative Fuels For Marine Shipping
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* Biofuels could offer emissions reductions, improved

s|anjolg pajueApy

energy security, and reductions in the carbon
intensity of marine shipping e
— Biofuels are distinct amongst competing liquid fuels in - "

their potential to significantly reduce GHG emissions
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Multi-Laboratory Effort

National Laboratory MATIONAL LAEDR ATORY Pacific Northwest
NATIONAL LABORATORY
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Research Objectives

* Evaluate the life cycle environmental impacts of novel

biofuels pathways for marine shipping using Argonne’s gl a Ry
GREET Model o O G R E ET
» Catalytic Fast Pyrolysis: Woody Blend LIFE-CYOLE MODE.

* Fischer-Tropsch Synthesis: Landfill Gas
* Hydrothermal Liquefaction: Waste Streams

* Forecast the global environmental impacts of international

shipping across the 2020 to 2050 time horizon rieinatinal
« |EA’s Sustainable Development Scenarios . Energy Agency
* Time-series analysis based on projected fuel demand, and ]-ea

environmental characterization using Argonne’s GREET model
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Catalytic Fast Pyrolysis (CFP)
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Landfill Gas to Fischer Tropsch Diesel
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Hydrothermal Liquefaction (HTL)
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Hydrothermal Liquefaction (HTL)
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Life Cycle GHG Contribution
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Environmental Heat Map
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Life Cycle GHG and SOx
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Life Cycle NOx and Water-Use
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IEA Global energy consumption from international shipping:
Sustainable Development Scenario (SDS) 2020-2050

Forecast the environmental impacts of 1o
global international shipping 90%
— |EA international shipping SDS 80%
projections over the 2020-t0-2050 time 70%

horizon
— GREET Time-series EF’s

60%

50%
Maritime AGE

— Characterize the environmental impact
of maritime biotechnology at scale

— Case Study: Pyrolysis-Qil as a marine

biofuel 10%
* (Case 1: Low Carbon H2 & Ammonia

40%

Energy Consumption
[% Share]

30%

20%

0%
* Case 2: Fossil H2 & Ammonia 2020 2025 2030 2035 2040 2045 2050

* Comparison with Hypothetical BAU case (HFO/LNG) Year

Source: [EA, Global energy consumption and CO2 emissions in international shipping in the Sustainable Development Legend: EE HFO B NG BEE Biofuel 1 Hydrogen M Ammonia
Scenario, 2019-2070, IEA, Paris
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Time-Series GHG Emissions, Energy, and Water Intensity of
International Shipping: Comparison of SDS and BAU Case
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Marginal Abatement Costs for Marine Biofuels
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Examining LCA and TEA results yields multiple promising pathways
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Conclusions & Perspectives

* Regulations are driving the deployment of low-carbon and low-sulfur fuels

Alternative fuels must meet decarbonization targets and increasingly stringent environmental standards on
SOx, NOx, and other environmental pollutant categories

The transition to alternative marine fuels is highly complex, requiring a global outlook and coordination
across the value-chain including engine manufacturers, fuel suppliers, ship owners and operators

 LCA is critical for guiding the sustainability of the maritime sector

Analysis should consider impacts across the entire life cycle to avoid shifting environmental burdens across
segments of the supply chain or across pollutant categories (e.g., emissions to land, water, and air).
Absence of robust accounting protocol can undermine and potentially negate the climate benefit of
alternative fuels for marine shipping

* Biofuels: Challenges & Opportunities

Biofuels from HTL, CFP, and WtE demonstrate >50% reduction in life cycle GHG emissions relative to HFO,
and thus are commensurate with IMO’s Long-term GHG emissions reductions targets

WLtE Pathways demonstrate low carbon intensities, and in select cases are carbon negative, but are sensitive
to the choice of counterfactual waste management scenario

Biofuels used in the marine sector may require minimal processing relative to counterparts for other sectors,
and drop-in replacement biofuels and/or bio-blends can leverage existing maritime fuel infrastructure
Global availability of biomass and competition for biomass resources across industries (e.g. Aviation, On-
Road Transport, etc.)

Fuel and engine testing is required to address concerns over fuel stability/compatibility, corrosivity, and
storage

U.S. DEPARTMENT OF ENERGY  OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY




Contact Information

* Dr. George G. Zaimes
Email: gzaimes@anl.gov

* Dr. Troy R. Hawkins
Email: thawkins@anl.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

25



