

# Updated Energy and Greenhouse Gas Emissions Results of Fuel Ethanol

Michael Wang Center for Transportation Research Energy Systems Division Argonne National Laboratory

*The 15<sup>th</sup> International Symposium on Alcohol Fuels San Diego, CA September 26-28, 2005* 





Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy

# U.S. Fuel Ethanol Production Has Experienced Large Increases, and the Trend Will Continue



Source: Renewable Fuels Association



#### Argonne Has Conducted Life Cycle Analyses of Transportation Fuels for More Than 25 Years

- Its Center for Transportation Research has analyzed energy and emission effects of transportation fuels for DOE since 1980s
- With DOE support, Argonne began to develop the GREET model in 1995
  - GREET is a life cycle model for transportation fuels and vehicle technologies
  - It contains more than 85 transportation fuel pathways including four fuel ethanol pathways
  - GREET is in the public domain; there are more than 2,000 registered users worldwide
- Since 1997, Argonne has used GREET to evaluate fuel ethanol's energy and emission effects; this presentation summarizes updated GREET results for fuel ethanol

#### Comparative Results Between Ethanol and Gasoline Are More Relevant to Policy Debate



ARGONNE NATIONAL LABORATORY





#### Even Though Electricity Has a Large Negative Net Energy Balance, There Is No Substitute for Its Main Uses





#### Energy in Different Fuels Can Have Very Different Qualities



#### Accurate Ethanol Energy Analysis Must Account for Increased Productivity in Farming Over Time



Based on historical USDA data; results are 3-year moving averages



## Improved Technology Has Reduced Energy Use and Operating Costs in Corn Ethanol Plants



Source: from Argonne's discussions with ethanol plant designers, recent USDA data, and other reported data.



## One-Third of Corn Kernel Mass Ends as Animal Feed (a Co-Product) in Ethanol Plants





## Accounting for Animal Feed Is a Critical Factor in Ethanol's Lifecycle Analysis

| Allocation Method | Wet milling | Dry milling |
|-------------------|-------------|-------------|
| Weight            | 52%         | 51%         |
| Energy content    | 43%         | 39%         |
| Process energy    | 36%         | 41%         |
| Market value      | 30%         | 24%         |
| Displacement      | ~16%        | ~20%        |

- Weight and energy methods are no longer used
- Argonne uses the displacement method, the most conservative approach
- Some studies do not consider co-products at all



#### Cellulosic Ethanol Plants Will Be Significantly More Efficient than Corn Ethanol Plants



Plants under intensive R&D efforts are designed to use the unfermentable portion of biomass to generate steam and electricity.





Total Btu Spent for One Btu of Gasoline and Ethanol Available at Fuel Pumps



## Use of Ethanol to Replace Gasoline Results in Fossil Energy and Petroleum Reduction Benefits



Change in Per-Mile Energy Use by Ethanol Blend to Displace Gasoline

#### Ethanol Blends, Especially E85 Made from Cellulosic Ethanol, Can Significantly Reduce GHG Emissions





#### Corn EtOH Reduces GHGs by 18-29% While Cellulosic EtOH Yields 85-86% Reduction. on Per Gallon Basis of EtOH Used



Energy-Equivalent Amount of Gasoline

#### Most of the Recent Corn EtOH Studies Show a Positive Net Energy Balance



Energy balance here is defined as Btu content a gallon of ethanol minus fossil energy used to produce a gallon of ethanol



#### **Energy Balance Results of Ethanol Depend Heavily on System Boundary Choices**

Ethanol Plant Materials Food Intake by Farmers and Construction **Operation-Related Activities:** Fertilizer, Farming, **Corn Transportation**, Ethanol Production, Ethanol Transportation, Farming Equipment Materials **Energy Use for Producing** Solar Energy Embedded **Process Fuels** 



## The Debate on Energy Balance Itself May Have Little Practical Meaning

- Though self evaluation of a fuel's energy balance is easy to understand, to do so for a fuel in isolation could be arbitrary
- All Btus are not created equal. The energy sector has been converting low-value Btus into high-value Btus, <u>with energy</u> <u>losses</u>
- Society has not made energy choice decisions on the basis of energy balance values of individual energy products
- Issues of concern, such as petroleum consumption and GHG emissions, should be analyzed directly for fuel alternatives
- A complete, robust way of evaluating a fuel's effects is to compare the fuel (e.g., ethanol) with those to be displaced (e.g., gasoline)



----





#### Of the 11.8 Billion Bushels of Corn Produced in U.S. in 2004, About 12% Was Used for Ethanol Production

U.S. Corn Usage by Segment 2004



- □ The U.S. produced 3.41 billion gallons of fuel ethanol in 2004, equivalent to 2.28 billion gallons of gasoline
- In 2003, the U.S. consumed 134 billion gallons of gasoline and 39 billion gallons of on-road diesel fuels

#### A Recent Study by Oak Ridge National Laboratory Concludes 1.3 Billion Tons of Biomass Available in U.S. Per Year





- Creates a credit-trading program where 1 gallon of cellulosic ethanol is equal to 2.5 gallons of renewable fuel
- Creates a program for production of 250 million gallons of cellulosic ethanol in 2013
- Creates a Loan Guarantee Program of \$250 million per facility
- Creates a \$650 million Grant Program for cellulosic ethanol
- Creates an Advanced Biofuels Technologies Program of \$550 million



# Conclusions

- Energy balance value for a given energy product alone is not meaningful in evaluating its benefit
- Any type of fuel ethanol helps substantially reduce fossil energy and petroleum use, relative to petroleum gasoline
- Corn-based fuel ethanol achieves moderate reductions in GHG emissions
- Cellulosic ethanol can achieve much greater energy and GHG benefits