

Energy and Greenhouse Gas Emissions Effects of Fuel Ethanol

Michael Wang

Center for Transportation Research Argonne National Laboratory

Presentation at the Congressional Briefing Organized By the Environmental and Energy Study Institute Washington, D.C., July 31, 2002

Recycling of Carbon by Fuel Ethanol Results in Net CO₂ Benefits

A Full Understanding of Ethanol's Energy and GHG Emissions Accounts for All Produ

Petroleum Refining Is the Key Energy Conversion Step for Gasoline Cycle

Key Parameters for Fuel Ethanol Fuel-Cycle Analysis

- Chemicals Production
 - Energy use for producing:
 - Fertilizers (N, P₂O₅, K₂O)
 - Herbicides
 - Insecticides

• Farming

- Yield per acre: corn and biomass
- Chemicals use intensity
- Soil N₂O emissions
- Energy use intensity
- Soil CO₂ emissions

Ethanol Production

- Corn ethanol: wet vs. dry milling
- Ethanol yield per unit of feed
- Energy use intensity
- Co-products

Vehicle Fuel Economy

- Gasoline vehicles for E10
- Flexible-fuel vehicles for E85

U.S. Corn Output Per Pound of Fertilizer Used Has Risen (3-yr Moving Average)

Care of Base

Technology Has Reduced Energy Use Intensity of Ethanol Plants

Source: from Argonne's discussions with ethanol plant designers and recent USDA data.

Energy and Emissions Allocated to Co-Products of Corn Ethanol Vary by Method

Allocation Method	Wet Milling	Dry Milling
Weight	52%	51%
Energy	43%	39%
Process energy	31%	34%
Market value	30%	24%
Displacement	~16%	~20%

- Weight and energy methods no longer used.
- Some studies did not consider co-products at all.

Energy Balance: Million Btu of Fossil Fuels Required to Make a Million Btu of Fuel Available at User Site

A problem with energy balance values is that the quality of a fuel is <u>NOT</u> taken into account!!!

E85 Reductions in Energy Use Relative to Gasoline

Note: Based on per-mile results of E85 use in FFVs. Fossil fuels here include petroleum, natural gas, and coal.

E85 Reductions in Greenhouse Gas Emissions Relative to Gasoline

Note: Based on per-mile results of E85 use in FFVs. GHG emissions are CO2equivalent emissions of CO2, CH4, and N2O.

Summary: Effects of Ethanol Use

- Any type of fuel ethanol helps substantially reduce transportation's fossil energy and petroleum use.
- Corn-based fuel ethanol achieves moderate reductions in GHG emissions.
- Cellulosic ethanol will achieve much greater energy and GHG benefits.