Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Hydrogen Produced with Nuclear Energy

Ye Wu¹, Michael Q. Wang¹, Anant D. Vyas¹, David C. Wade², Temitope A. Taiwo²

- ¹ Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- ² Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

In Nuclear Technology, Volume 155: 192-207 (2006)

Abstract

A fuel-cycle model—called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model—has been developed to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H₂) production pathways for fuel-cell vehicles (FCVs) applications. In this study, the GREET model was expanded to include four nuclear H_2 production pathways: (1) H_2 production at refueling stations via electrolysis using light water reactor (LWR)-generated electricity; (2) H₂ production in central plants via thermo-chemical water cracking using heat from high temperature gas-cooled reactor (HTGR); (3) H₂ production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam; and (4) H_2 production at refueling stations via electrolysis using HTGR-generated electricity. The WTW analysis of these four options include these stages: uranium ore mining and milling; uranium yellowcake transportation; uranium conversion; uranium enrichment; uranium fuel fabrication; uranium fuel transportation; electricity or H_2 production in nuclear power plants; H_2 transportation; H_2 compression; and H_2 FCVs operation. Our well-to-pump (WTP) results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H₂ compared to natural gas-based H₂ production via steam methane reforming for a unit of H₂ delivered at refueling stations. When H₂ is applied to FCVs, the WTW results also show large benefit in reducing fossil energy use and GHG emissions.

Keywords: hydrogen, fuel-cell vehicles, well-to-wheels analysis,