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EXECUTIVE SUMMARY

H2@Scale is a U.S. Department of Energy (DOE) initiative that brings together
stakeholders to advantee affordable production, transport, storagad utilizationof hydrogen
(H2) as an energy carriéo increase revenue opportunities in multipreergy sectord’he focus
of the current work is to characterize the growth potential of diverse hydrogen industries in the
United States givenresearch and developmeR&D) advancements in hydrogen technologies.

Current and emergingydrogenproduction technologies utilize diverse energy sources,
including natural gaéNG) reforming, as well agenewableand nuclear power for low
temperature and higtemperature water splittin@he producedhydrogenalso enables emerging
domestic industries that valeenventional andenewabléhydrogenas an energy carrier for
intermediate and end use. The success2@®Scale(Figure ES.1ependsot only onhydrogen
demand frongrowingexisting marketsuch as petroleum refining and ammonia ¢gNH
production putalsoon the development of new markstsch asnetals refining, synthetic fuel
(synfuel) and chemical production, biofudight-duty (LD) and heavyduty (HD) hydrogerfuel
cell (FC) electric vehicles (FCEVsand injection intdNG pipelines all of whichcan
significantly increaséydrogendemand relative to current levelsapproximatel{0 million
metric tons [MMT] annually

Conventional Storage Transportation

Synthetic
Fuels

Upgrading
Qil /
Biomass

Power
Generation

Ammonia/
Fertilizer

Nuclear H,0 Hydrogen
Generation

Metals
Production

Electric Grid

Infrastructure
Fossil

Chemical/Industrial
Processes

Heat/Distributed

Infrastructure Power

FIGURE ES.1 Schematic ofH2@Scale Supply Sources and Demand Applications
(Source:DOE 2020)
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This studyfocused primarily orfive of the demand sectors shown on the Figahd side
of Figure ES.It synfuels, upgradingf oil/lbiomass NHz/fertilizer, metak refining, and
hydrogenvehicles (transportatiort) along with gas infrastructufeFor each sector, a hydrogen
demand potentiakas quanti fi ed, al on gihydeogeéndensandipdtdmtrale s h o |
reflectsa practicalamount of hydrogen that could be used in that sector, barring economic
consideations. The threshold price reflects the price at which the consumer would utilize
hydrogen in lieu of an alternative that could supply the same performance.

The U.S. DOB Blydrogen and Fuel Cell Technologies Offltas been funding a
number of stakehot&t workshops, analytic studies and R&D projects related to the H2@Scale
concept. The present report provides details on the topic of potential hydrogen demand, while
two additional analysis reports assess energy resources for hydrogen production (@& mhelly
2020) and the technical and economic potential of the H2@Scale concept (Ruth et al. 2020).
Demand potentials and threshold prices from the present report are used as inputs to the
H2@Scale technical and economic potential report.

Potential @mandfor hydrogenwas assessed for each sector by documenting current
utilization andpossiblegrowth inexistinghydrogenenduses aneéxamining theotentialfor
hydrogen use in neandemergingapplicationsWhile methodologies differed by sector, they
shared a common objectieé utilizing existing DOE and industrysupported toolsdata and
projectionsand of captuing regional differencet the extent possiblé&dditional values of
hydrogerasanenergystoragemediumthat enables renewable power generation and progides
variety of electric grid services are discussed in a separate (Bpdintet al. 2@0).

ES.1 Upgrading Oil/Biomass

Today, troleum refinerie¢ i u p g r domassy ion | Fi grethdargdstS. 1)
consumes of hydrogenin the Uhited States requiring about 10 MMT olfiydrogenannually, of
which about 60%s produced via steam methane reforming (SMR) of dN@40% isproduced
internally viacatalytic refornmg of naphthaHydrogendemands by petroleum refineriggpend
largely on thevolumeof crude processegyoduct slates (e.ghe ratio of gasolin¢o-diesel
productior), andthe heaviness (measured American Petroleum InstitutéPl] gravity) and
sulfur (S) contentof crudeinput This study use® O E §.8.Energy Information
Administration(EIA) projections of crude input and gasoline, dieaatl jet fuel production
through 2050, along with projections of crude APl gravity aalflurc ont ent fr om DOE®O ¢
octane fuel study, to estimate growtthiydrogendemandhrough 205G Figure ES.2 shows

1 Several demand sectors shown in Figure ES.1 are not included in this report, either because the application is not
sufficiently well defined at this time or because it is spread over many diffen@esses, complicating any
assessment. These include heating and fotHydagenend wuses
supply and the gas infrastructure, assessing hydrogen demand is highly dependent on the concentration of
hydrogen in theipeline infrastructure and the ability of ende devices to burn such a fuel. These issues are
discussed ifsection6. Though excluded from this report, other end uses may be evaluated in future work.

2 Hydrogen demand could increase further, depenaimigow refiners choose to comply with emissions reductions
required under the International Convention for the Prevention of Pollution from Ships (MARPOL). Because of
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hydrogendemandoy Petroleum Administration for &ense District (PADDjegions In addition
to theinternalhydrogen productiomia catalytic reforming of naphthéhe ptalhydrogen
demandor petroleum refininggrowsfrom 5.9MMT in 2017 toan estimated.5 MMT in 2(60.

This study als@assessd potentiahydrogendemand for biofuel productiamsingEIA
projections ofet fueldemandn 2050 (38.6 Billion galEIA 2017 and assuminthe American
Society for Testing and MaterialdSTM) allowance of up to 50% biofuelending foraviation
applicationdASTM 2020) Furthermore, the studgstimatechydrogen demanfbr convering a
projectedl.8billion gal/yr of diesel dropn fuelsfrom the hydrotreamentof fats, oils and
greasegFOGs). Total hydrogendemandor biofuel productionvas therestimated by
multiplying thehydrogerdemand foselectediofuel conversiortechnologies per unit of fuel
producedor hydrogenintensity) with theestimatediofuel productionvolume At 490gu2/gal
of bio-jet produced viaatalytic fast pyrolysis of waty biomassand76 gi»/gal of diesel
produced vighydrareatment oFOGs, thetotal potentialH, demand fobiofuel productions
projected to b&.7 MMT/yr.

We assumeéthathydrogenproduction costvia therefining of petroleum oil andbio-oil
arecompetitive with the cost dfydrogenproduction viaSMR of NG, and thahydrogendemand
for refining processewiill likely be inelasticrelativeto the hydrogenmarket price.

8.0

o AN
o o

o
o

(Million metric tons per year)
N w N
o o o

Hydrogen demand for US refineries
P
o

0.0
2010 2015 2020 2025 2030 2035 2040 2045 2050

PADD1 PADD2 PADD3 PADD4 PADD5

FIGURE ES.2 Projected Total Hydrogen Demand for U.S. Refineries by
PADD through 2050

the uncertainty around that decision (and the potential for individual refiners to elt@osative solutions),
MARPOL impacts were excluded from this analysis.
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ES2 Ammonia/Fertilizer .

Nitrogen (N) fertilizers arean integral part of foodand energycrop productiorand rely
on NHs production Stoichiometrically, he NH3 synthesis procesgquires approximately
0.18kg of hydrogenperkg of NHz produced This study used projected growthagricultural
commodity productiono estimatdotal U.S.demandor NHs fertilizers, along withN fertilizer
efficiencies (in lbcrop/lbN) from the National Agricultural Statistics ServigBlASS)of the
U.S. Department of Agriculturendalsoestimates of the domestically produced share of
fertilizer demando estimatenydrogenuse

Out of the13.6 MMT of NHs consunedin the United Statesin 2016, thelJ.S. Geological
Survey(2018 estimatsthat 9.8 MMTwereproduced domestically, while 3.8 MM#¥ere
imported.Thus, &pending on theost ofdomestially produced\Hsz and globaNHs prices, the
U.S. mayimportor exportNHsz and its derivativeBecauséNHs prices closelyfollow NG
prices the largeresourcesind low price®f NG in the Uhited Statescould play an important role
in increasng domesticNH3 production forthe exportmarket, thusncreasingdemand for
hydrogenas well At the same time, i€urrentlyimportedNHs wereinsteadproduced in the
United States domestic productionazild be increased bgpproximately30% withouta
corresponding increase domestic NH demand.

Industry cataon existingand plannedNHs plants in thdJnited Stateswere usedd
estimatethe inputhydrogenrequired foNHs production by regioiffAmmonialndustry 2018)
FigureES.3 shows an estimated 25% increadeynirogendemand for NH productionbetween
2017 and 2024VNe assuméthat domestidhiydrogen demand fd¥H3 production beyond 2%
would grow by anotherl5% by 205Q thus increasingnnualhydrogen demantb 3.6 MMT. We
alsoassumd thatif hydrogen were produced at $2/kg, domestic ammonia production would be
competitive with imports andould evendisplace imports. While the current coststdteof-the-
art SMR canreachlower levelsdue to lowpriced natural gas$2/kgwas assumed to be a
reasonable threshold priggven industry input on common price points for hydrogen.

3.500
3.000 f
2,500
2.000
1.500

1.000

0.500

US Hydrogen Demand for NH;
Production (million metric tons per year)

0.000
2017 2018 2019 2020 2021 2022 2023 2024

FIGURE ES.3 Projected Hydrogen Demand for U.S. NH Production through 2024
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ES.3 Synthetic Fuelsand Chemicals @

In 2016, the Wited Statesemitted 5 billion metric tons (MT) of carbon dioxideé@.).
Because large number of hydrocarbon synfuels and chemazaisbe producedhenhydrogen
reacts withCOg, the production of synfuels and chemicals represents another potential demand
for hydrogen Moreover, when C@s capturedand usedor hydrocarbon synfuel production
instead of being released to the atmosphere, the carbon in the produced fuel or chemical can be
considered neutrah terms of emission8ecause of their high volumetric and gravimetric
energy densityas well as their compatibility with existirfgeling infrastructureliquid
hydrocarborfuels are of particular interest for aviation, marine, rail, and truck applications.
Methanol(MeOH) production for domestic use and export markgtsnother potential growth
opportunity

Capturing CQfrom diluted flue gases is costly and requires a significant amount of
energy. However, approximately 100 MMT of U.S. annuab €Rissions already occur in
concentrated ford from ethanol plants and from SMRs producimgirogenfor petroleum
refining or NH; production If all 100 MMT of CO; from ethanol NHz, and SMR plants were
used to produce synfuethie potentialhydrogendemandcould be as high dst MMT/yearr,
assuming a maximum 100% carbon conversion efficiency and asitogchiometric 3:1H,/CO;
molar ratio Figure ES.4hows heregional distributiorof this potentialhydrogendemand

In the present study stoichiometric 3:1 MCO, moleratio andcarbon conversion
efficiency of 80% wereaised to estimatthe potentiahydrogendemand fomethanobproduction
whereasa 2.4:1 H/CO, moleratio and carbon conversion efficiency of 46% wased to
estimatethe potentiahydrogendemand fosyntheticFischerTropsch(FT) fuel productionIf
only high-purity CO, (~44 MMT) from ethanoblantswere convertetb nearcarborneutral
synthetic FT fuel®r synthetic methanol, the former woukhuire approximately MMT of
hydrogento produce approximately 2.3llimn gallon of FT fue] whereaghe latter would
requireabouté MM T to produce25.5MMT of syntheticmethanol.

A literature review of techneconomic analyses that estimate the cost of various synfuels
and chemical productiogmrocessesvas conducted to estimate a targgdrogenprice for these
synthetic productthat would enable themo be competitive with theconventional
counterparts. The targbydrogenprice was estimated so thae cost of synfuelvould match
themarket priceof its conventional counterparth&thresholchydrogenprice of~$1/kgwas
estimatedhs requiredo enablesyntheticFT fuelto compete with petroleum diesal $4/gal For
synthetic MeOH productiornthethresholdhydrogenpricewas estimated at $1.73/kg to produce
methanol at $0.5/kg
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