

## Overview of the GREET<sup>TM</sup> Life-Cycle Analysis Model

#### Michael Wang, Group Leader

Systems Assessment Group Energy Systems Division Argonne National Laboratory

2015 GREET Users Workshop October 15, 2015



# Societal effects of vehicle technologies and fuels

- Greenhouse gas (GHG)
- Energy security
- Air quality
- Other environmental effects (water, ecosystem services, etc.)
- The GREET model was developed to help evaluate these attributes



## >30 researchers in Argonne's Systems Assessment Group study energy and environmental issues of transportation and energy systems

#### Systems Assessment Group, Energy Systems Division, **Argonne National Laboratory** Michael Wang Jacki Papiernik **Group Leader** Administrative Support **Amgad Elgowainy** Jennifer Dunn Marianne Mintz Life-Cycle Analysis Team Lead Biofuel Analysis Team Lead Deployment & Analysis Team Lead Qiang Dai (post-doc) Felix Adom (post-doc) Andy Burnham David Dieffenthaler Pahola Benavides Gallego (post-doc) Linda Gaines\* Jeongwoo Han Hao Cai Steve Plotkin (STA) Jarod Kelly Christina Cantor (post-doc) Marcy Rood Werpy **David Lampert** Ed Frank Dan Santini Uisung Lee (post-doc) Mi-Ae Ha (post-doc) Chris Saricks (STA) Krishna Reddi Ambica Pegallapati (post doc) Tom Stephens Raja Sabbisetti Zhangcai Qin (post-doc) Anant Vyas (STA) John Sullivan (STA) May Wu Joann Zhou

in Tribology and Thermal Management Section of ES

## The GREET (<u>Greenhouse gases</u>, <u>Regulated Emissions</u>, and <u>Energy use in <u>Transportation</u>) Model</u>



## GREET development has been supported by several DOE Offices since 1995

- Vehicle Technology Office (VTO)
- Bioenergy Technology Office (BETO)
- Fuel-Cell Technology Office (FCTO)
- Geothermal Technology Office (GTO)
- Energy Policy and Systems Analysis (EPSA)

## GREET has been in public domain and free of charge since it inception in 1995

#### **Examples of major uses of GREET**

- US EPA used GREET for RFS and vehicle GHG standard developments
- CARB developed CA-GREET for its Low-Carbon Fuel Standard compliance
- DOE, USDA, and the Navy use GREET for R&D decisions
- DOD DLA-Energy uses GREET for alternative fuel purchase requirements
- Auto industry uses it for R&D screening of vehicle/fuel system combinations
- Energy industry (especially new fuel companies) uses it for addressing sustainability of R&D investments
- Universities uses GREET for education on technology sustainability of various fuels



## GREET.net platform integrates all GREET modules (originally developed in Excel) together



## GREET.net hierarchy

**Products** 

Mixes

**Pathways** 

**Processes** 

**Technologies** 

Resources



## GREET outputs include energy use, greenhouse gases, criteria pollutants and water consumption for vehicle and energy systems

- Energy use
  - Total energy: fossil energy and renewable energy
    - Fossil energy: petroleum, natural gas, and coal (they are estimated separately)
    - Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy
- Greenhouse gases (GHGs)
  - ➤ CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, and black carbon
  - CO<sub>2</sub>e of the three (with their global warming potentials)
- Air pollutants
  - VOC, CO, NO<sub>x</sub> PM<sub>10</sub> PM<sub>2.5</sub> and SO<sub>x</sub>
  - They are estimated separately for
    - Total (emissions everywhere)
    - Urban (a subset of the total)
- Water consumption
- GREET LCA functional units
  - Per mile driven
  - Per unit of energy (million Btu, MJ, gasoline gallon equivalent)
  - Other units (such as per ton of biomass)

#### There are more than 23,000 registered GREET users globally









- Geographically, 71% in North America, 14% in Europe, 9% in Asia
- 57% in academia and research, 33 % in industries,
   8% in governments

  Chevron





California Environmental Protection Agency

Air Resources Board



























Institute of









## GREET includes more than 100 fuel production pathways from various energy feedstock sources



## GREET examines more than 80 on-road vehicle/fuel systems for both LDVs and HDVs

#### **Conventional Spark-Ignition Engine Vehicles**

- ▶ Gasoline
- ► Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- Gaseous and liquid hydrogen
- Methanol and ethanol

#### Spark-Ignition, Direct-Injection Engine Vehicles

- ▶ Gasoline
- Methanol and ethanol

#### Compression-Ignition, Direct-Injection Engine Vehicles

- Diesel
- ▶ Fischer-Tropsch diesel
- ▶ Dimethyl ether
- ▶ Biodiesel

#### **Fuel Cell Vehicles**

- On-board hydrogen storage
  - Gaseous and liquid hydrogen from various sources
- On-board hydrocarbon reforming to hydrogen

#### **Battery-Powered Electric Vehicles**

▶ Various electricity generation sources

#### **Hybrid Electric Vehicles (HEVs)**

- ▶ Spark-ignition engines:
  - Gasoline
  - Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
  - Gaseous and liquid hydrogen
  - Methanol and ethanol
- Compression-ignition engines
  - Diesel
  - Fischer-Tropsch diesel
  - Dimethyl ether
  - Biodiesel

#### Plug-in Hybrid Electric Vehicles (PHEVs)

- Spark-ignition engines:
  - Gasoline
  - Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
  - Gaseous and liquid hydrogen
  - Methanol and ethanol
- ▶ Compression-ignition engines
  - Diesel
  - Fischer-Tropsch diesel
  - Dimethyl ether
  - Biodiesel



### Non-road transportation modes in GREET

- Air transportation
  - Globally, a fast growing sector with GHG reduction pressure
  - Interest by DOD, ICAO, FAA, and commercial airlines
  - GREET includes
    - Passenger and freight transportation
    - Various alternative fuels blending with petroleum jet fuels
- Marine transportation
  - Pressure to control air pollution in ports globally
  - Interest by EPA, local governments, IMO
  - Biodiesel and LNG are potential marine alternative fuels
  - GREET includes
    - Ocean and inland water transportation
    - Baseline diesel and alternative marine fuels
- Rail transportation
  - Interest by DOT, railroad companies
  - Potential for CNG/LNG to displace diesel

## What is new in GREET2015: major expansions and updates

- Water consumption for
  - hydrogen from various sources
  - petroleum fuels
  - biofuels
  - hydro-electric power
- GHG emissions intensities of U.S. shale oil production from Bakken and Eagle Ford plays
- Updated GHG emission intensities for Canadian oil sands pathways
- High-octane fuel pathways with E10, E25, and E40 ethanol blends
- Land-management practices of cover crops and manure applications for corn-soy systems
- Expanded waste-to-energy pathways
- Updating and addition in vehicle cycle analysis
  - Aluminum
  - Molybdenum
  - Platinum
  - Zinc
  - Nickel
  - Silicon
  - Glass and glass fiber
  - Chilean copper

### GREET Approach and data sources

#### Approach: build LCA modeling capacity with the GREET model

- Build a consistent LCA platform with reliable, widely accepted methods/protocols
- Address emerging LCA issues
- Maintain openness and transparency of LCAs by making GREET publicly available
- Primarily process-based LCA approach (the so-called attributional LCA); some features of consequential LCA are incorporated

#### Data sources

- Open literature and results from other researchers
- Simulations with models such as ASPEN Plus for fuel production and ANL Autonomie and EPA MOVES for vehicle operations
- Fuel producers and technology developers for fuels and automakers and system components producers for vehicles
- ➤ Baseline technologies and energy systems: EIA AEO projections, EPA eGrid for electric systems, etc.
- Consideration of effects of regulations already adopted by agencies

### Main technical issues of GREET LCAs

- LCA system boundary scope of LCA
  - Process-based LCA
  - Attributional vs. consequential LCA
- Co-product methods in LCA
- Data availability and representation
  - Temporal variation
  - Geographic variation
  - Sensitivity of LCA parameters and uncertainty analysis; GREET incorporates stochastic modeling features



### LCA system boundary: petroleum to gasoline



## LCA GHG emissions of petroleum fuels is dominated by end use release of CO2; refinery emissions is a distant second





### LCA system boundary: compressed natural gas



#### Methane leakage along NG supply chain is a major concern

| Sector                  |                                          | CH₄ Emissions: Percent of Volumetric NG Produced (Gross) |                                      |                                  |                              |                                     |                          |                                           |       |                                           |                    |                           |                                  |
|-------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------|----------------------------------|------------------------------|-------------------------------------|--------------------------|-------------------------------------------|-------|-------------------------------------------|--------------------|---------------------------|----------------------------------|
|                         | EPA -<br>Inventory<br>5 yr avg<br>(2011) | CMU -<br>Marcellus<br>Shale<br>(2011)                    | NREL -<br>Barnett<br>Shale<br>(2012) | API/<br>ANGA<br>Survey<br>(2012) | NOAA -<br>DJ Basin<br>(2012) | NOAA -<br>Uintah<br>Basin<br>(2013) | Exxon<br>Mobil<br>(2013) | EPA -<br>Inventory<br>2011 data<br>(2013) | Texas | EPA -<br>Inventory<br>2012 data<br>(2014) | Stanford<br>(2014) | IUP -<br>Bakken<br>(2014) | IUP -<br>Eagle<br>Ford<br>(2014) |
| Gas Field               | 1.18                                     |                                                          | 0.9                                  | 0.75                             | 2.3-7.7                      | 6.2-<br>11.7                        | 0.6                      | 0.44                                      | 0.42  | 0.33                                      |                    | 2.8-<br>17.4              | 2.9-<br>15.3                     |
| Completion/<br>Workover |                                          |                                                          | 0.7                                  |                                  |                              |                                     |                          | 0.17                                      | 0.03  | 0.04                                      |                    |                           |                                  |
| Unloading               |                                          |                                                          | 0                                    |                                  |                              |                                     |                          | 0.04                                      | 0.05  | 0.05                                      |                    |                           |                                  |
| Other<br>Sources        |                                          |                                                          | 0.2                                  |                                  |                              |                                     |                          | 0.23                                      | 0.34  | 0.24                                      |                    |                           |                                  |
| Processing              | 0.16                                     |                                                          | 0                                    |                                  |                              |                                     | 0.17                     | 0.16                                      |       | 0.15                                      |                    |                           |                                  |
| Transmission            | 0.38                                     |                                                          | 0.4                                  |                                  |                              |                                     | 0.42                     | 0.34                                      |       | 0.35                                      |                    |                           |                                  |
| Distribution            | 0.26                                     |                                                          |                                      |                                  |                              |                                     |                          | 0.23                                      |       | 0.21                                      |                    |                           |                                  |
| Total                   | 1.98                                     | 2.2                                                      |                                      |                                  |                              |                                     |                          | 1.17                                      |       | 1.03                                      | 3.6-7.1            |                           |                                  |

- Studies in **GREEN** are with bottom-up approach: measuring emissions of individual sources -> aggregating emissions along supply chain
- Studies in **RED** are with top-down approach: measuring CH4 concentration above or near fields/cities -> deriving CH4 emissions -> attributing emissions to NG-related activities



## CNG vehicle efficiency and $CH_4$ leakage are two key factors of WTW GHG emissions of CNGVs vs. GVs



## NGV efficiency and CH₄ leakage are two key factors of WTW GHG emissions of LNG HDVs vs. diesel HDVs





## GREET includes various biomass feedstocks, conversion technologies, and liquid fuels



### LCA system boundary: switchgrass to ethanol



### LCA co-product methods: benefits and issues

- Displacement method
  - > Data intensive: need detailed understanding of the displaced product sector
  - > Dynamic results: subject to change based on economic and market modifications
- Allocation methods: based on mass, energy, or market revenue
  - Easy to use
  - > Frequent updates not required for mature industry, e.g. petroleum refineries
  - Mass based allocation: not applicable for certain cases
  - Energy based allocation: results not entirely accurate, when coproducts are used in non-fuel applications
  - ➤ Market revenue based allocation: subject to price variation
- Process energy use approach
  - GREET method for petroleum refineries
  - Detailed engineering analysis is needed
  - > Upstream burdens still need allocation based on mass, energy, or market revenue



### Co-products and their treatment in GREET LCAs

| Pathway                                                       | Co-Product                 | Displaced Products                    | LCA Method in GREET                                  | Alternative LCA Methods Available in GREET          |
|---------------------------------------------------------------|----------------------------|---------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| Corn ethanol                                                  | DGS                        | Soybean, corn, and other animal feeds | Displacement                                         | Allocation based on market revenue, mass, or energy |
| Sugarcane ethanol                                             | Electricity from bagasse   | Conventional electricity              | Allocation based on energy                           | Displacement                                        |
| Cellulosic ethanol (corn stover, switchgrass, and miscanthus) | Electricity from<br>lignin | Conventional electricity              | Displacement                                         | Allocation based on energy                          |
| Petroleum gasoline                                            | Other petroleum products   | Other petroleum products              | Allocation at refining process level based on energy | Allocation based on mass, market revenue            |



## Choice of co-product methods can have significant LCA effects



Biofuel production pathways and co-product methods included in this Study.

| ,                            | ,                                                                           |                                           |  |
|------------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--|
| Biofuel Pathway              | Method of Dealing with Multiple<br>Products                                 | Case<br>Number                            |  |
| Corn to ethanol              | Displacement<br>Mass<br>Energy content<br>Market value<br>Process purpose   | C-E1<br>C-E2<br>C-E3<br>C-E4<br>C-E5      |  |
| Switchgrass to ethanol       | Displacement<br>Energy content<br>Market value                              | G-E1<br>G-E2<br>G-E3                      |  |
| Soybeans to biodiesel        | Displacement<br>Mass<br>Energy content<br>Market value                      | S-BD1<br>S-BD2<br>S-BD3<br>S-BD4          |  |
| Soybeans to renewable diesel | Displacement<br>Mass<br>Energy content<br>Market value<br>Hybrid allocation | S-RD1<br>S-RD2<br>S-RD3<br>S-RD4<br>S-RD5 |  |
|                              |                                                                             |                                           |  |



### Life-cycle GHG emissions of selected biofuels



### Emission breakout for different biofuels

■ Fuel combustion, including

biogenic emissions credit

■ Land-use Change

#### Corn ethanol, 62 g CO<sub>2</sub>e/MJ Including DGS credit: -14 g CO<sub>2</sub>e/MJ

1%
10%
16%
■ Fertilizer production
■ Fertilizer N₂O
■ Farming, harvest, collection, storage
■ Fuel production
■ Transportation and Distribution

## Pyrolysis gasoline from Forest Residue, g 27 CO<sub>2</sub>e/MJ



#### Corn stover ethanol, 14 g CO<sub>2</sub>e/MJ

Including electricty (-18 g/MJ) and LUC (-1 g/MJ) credits



### Renewable gasoline via IDL g 15 CO<sub>2</sub>e/MJ





43%

2%

### **Electricity Generation Systems in GREET**

## 1. Coal: Steam Boiler and IGCC

Coal mining & cleaning Coal transportation Power generation

#### 3. Nuclear: light water reactor

Uranium mining
Yellowcake conversion
Enrichment
Fuel rod fabrication
Power generation

#### 4. Petroleum: Steam Boiler

Oil recovery & transportation
Refining
Residual fuel oil transportation
Power generation

## 2. Natural Gas: Steam boiler, Gas Turbine, and NGCC

NG recovery & processing NG transportation Power generation

#### 5. Biomass: Steam Boiler

Biomass farming & harvesting
Biomass transportation
Power generation

#### 6. Hydro-Power

- 7. Wind Turbine
- 8. Solar PV and CSP
- 9. Geothermal



## GREET models electricity generation mix at national, state and utility region levels



#### Data and methods for GREET electricity modeling

#### Electricity generation mixes

➤ EIA's Annual Energy Outlook

#### Thermal efficiencies

➤ EIA's electric generating unit-level performance data (EIA Form 923 and 860 data)

#### GHG emission factors

- CH<sub>4</sub> and N<sub>2</sub>O emissions are estimated by multiplying the fuel specific heat input in MMBtu by appropriate EFs from Table C-2 of EPA's Final Mandatory Reporting of Greenhouse Gases Rule (EPA, 2009)
- > CO<sub>2</sub> emissions calculated from fuel carbon intensity and fuel consumption

#### Criteria air pollutants emission factors

- SOx and NOx emission data from the EPA's AMPD database
- PM emissions for various EGUs by emissions control technologies in AMPD



### GREET quantifies effects of electric generation mix and relative EV efficiency on EV GHG performance





—Relative Vehicle Efficiency: 300%

Relative Vehicle Efficiency: 400%

--- Relative Vehicle Efficiency: 500%



### Example: biofuel pathway water use accounting



## Life-cycle water consumption is dominated by electricity use and irrigation for biofuels



## GREET 2 simulates vehicle cycle energy use and emissions from material recovery to vehicle disposal



### Developing a materials inventory for vehicles



.. Automotive System Cost Model, IBIS Associates and Oak Ridge National Laboratory



### Life Cycles of 60+ materials are included in GREET 2

| Material Type      | Number in GREET | Examples                                              |  |  |
|--------------------|-----------------|-------------------------------------------------------|--|--|
| Ferrous Metals     | 3               | Steel, stainless steel, iron                          |  |  |
| Non-Ferrous Metals | 12              | Aluminum, copper, nickel, magnesium                   |  |  |
| Plastics           | 23              | Polypropylene, nylon, carbon fiber reinforced plastic |  |  |
| Vehicle Fluids     | 7               | Engine oil, windshield fluid                          |  |  |
| Others             | 17              | Glass, graphite, silicon, cement                      |  |  |
| Total              | 62              |                                                       |  |  |

#### Key issues in vehicle-cycle analysis

- Use of virgin vs. recycled materials
- Vehicle weight and lightweighting
- ☐ Vehicle lifetime, component rebuilding/replacement

GREET battery LCA module contains life-cycle inventory of lithium-ion batteries including battery production and recycling



### Battery LCA to Vehicle LCA to Vehicle/Fuel LCA



# Please visit greet.es.anl.gov for:

- GREET models
- GREET documents
  - LCA publications
- GREET-based tools and calculators