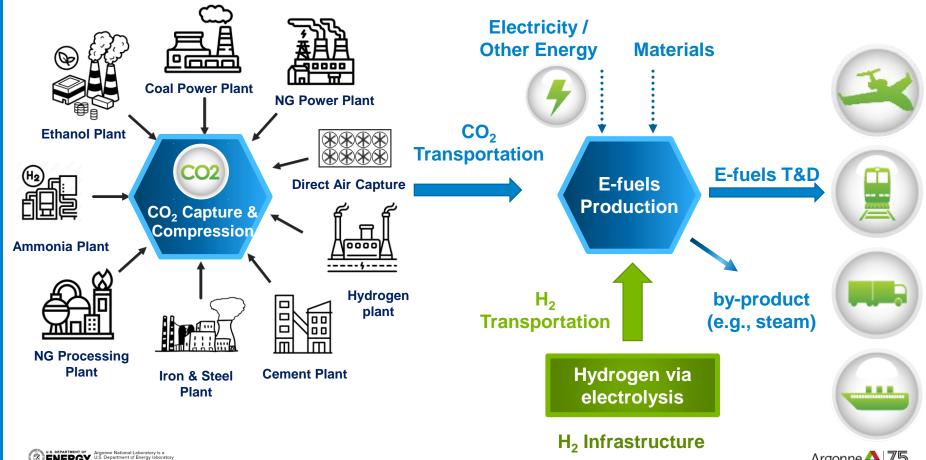
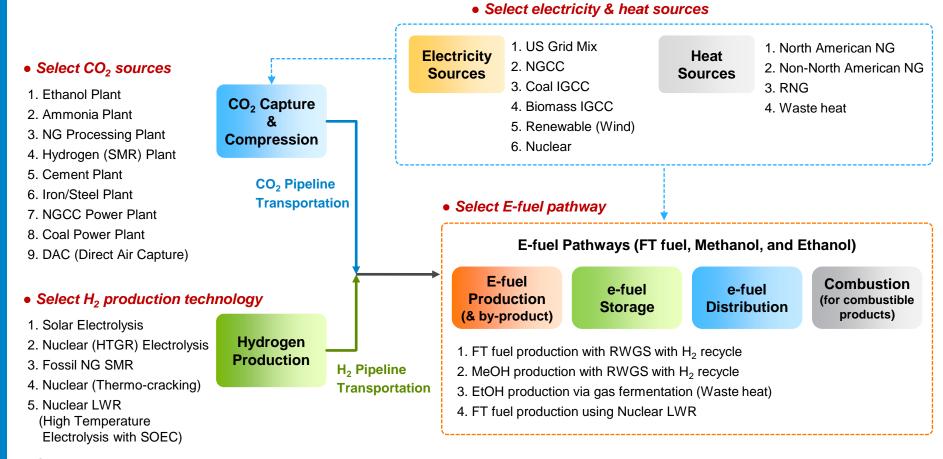
CARBON CAPTURE UTILIZATION AND SEQUESTRATION (CCUS)


Pingping Sun, Uisung Lee

Systems Assessment Center
Energy Systems and Infrastructure Analysis Division
Argonne National Laboratory



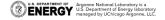
CO₂ Sources for Electro-Fuels Production

GREET CCUS Flowchart (E-fuel Tab)

CO₂ Capture and Compression (Industrial CO₂ Sources)

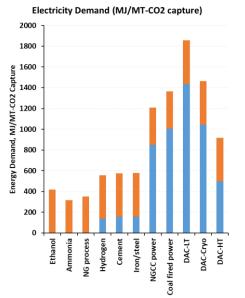
CO₂ purity is the key

- High-purity CO₂ does not require capture, but only compression stage
- CO₂ capture (MDEA*) and compression processes for med- and low-purity sources
 (*) Methyl diethanolamine CO₂ capture


	CO ₂ Capture & Co	mpression Energy					
CO ₂ Sources	Electricity (MJ/MT-CO ₂)	Natural Gas Input (MJ/MT-CO ₂)	Reference				
Ethanol Plant	420	0	• CO ₂ Capture Energy				
Ammonia Plant	318	0	- DOE/NETL-2013/1602 (2014) - DOE/NETL-2015/1723 (2015)				
NG Processing Plant	352	0					
Hydrogen (SMR) Plant	558	4454	 CO₂ Compression Energy GREET compression module 				
Cement Plant	577	4441					
Iron/steel Plant	579	4459					
NGCC Power Plant	1207	0					
Coal Power Plant	1365	0					

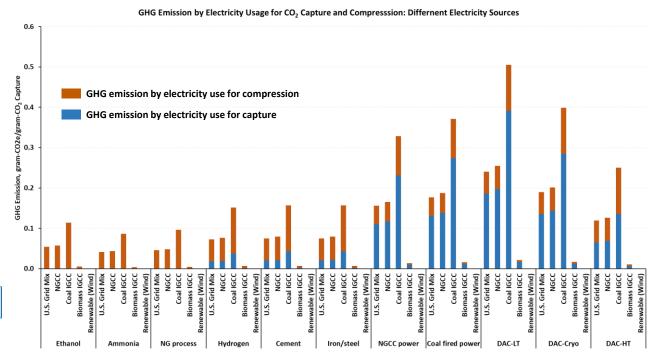
CO₂ Capture Energy for Direct Air Capture (DAC)

DAC Technology		e & Compression Energy	Reference			
	Electricity (MJ/MT-CO ₂)	Natural Gas Input (MJ/MT-CO ₂)	Kelelelice			
Low temperature (LT) adsorption	1856	6750	 CO₂ Capture Energy Deutz and Bardow, Nature Energy vol 6, 203–213 (2021) (DAC-LT) 			
Cryogenic carbon capture	1465	0	-Baxter et al. GHGT-15 (2021) (DAC-Cryogenic) -Keith et al. Joule vol 2(8), 15, 1573-1594 (2018) (DAC-HT)			
High temperature (HT) absorption	918	8805	• CO ₂ Compression Energy: GREET compression module			


The energy consumption varies greatly among different DAC technologies.

Electricity Demand and GHG Emission: CO₂ Capture and Compression

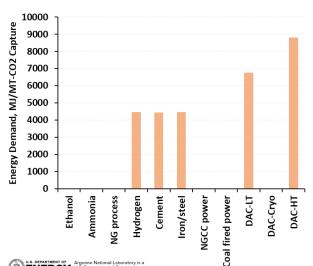
- Electricity demand for compression
- Electricity demand for capture



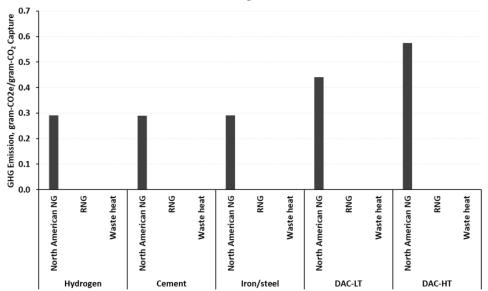
CO₂ compression work

Compression work =
$$\left(\frac{mzRT}{\eta M_w}\right) \left(\frac{K_s}{K_s - 1}\right) \left[\left(\frac{P_2}{P_1}\right)^{1 - \frac{1}{K_s}} - 1\right]$$

m CO $_2$ mass rate R Universal gas constant P Pressure T Temperature η Compressor efficiency ρ CO $_2$ density ρ CO $_2$ density ρ CO $_2$ molecular weight ρ CO $_2$ molecular weight

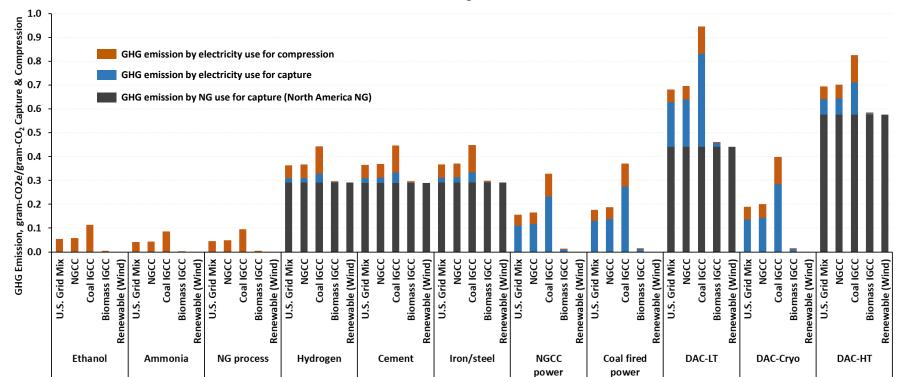

- GHG emission by electricity sources
 - Coal > NGCC > U.S Grid Mix >> Biomass IGCC
- Zero GHG emission with renewable (Wind) electricity

Heat Demand and GHG Emission: CO₂ Capture


- Natural gas for CO₂ capture from:
 - Hydrogen SMR
 - Cement
 - Iron/Steel
 - DAC (LT)
 - DAC (HT)

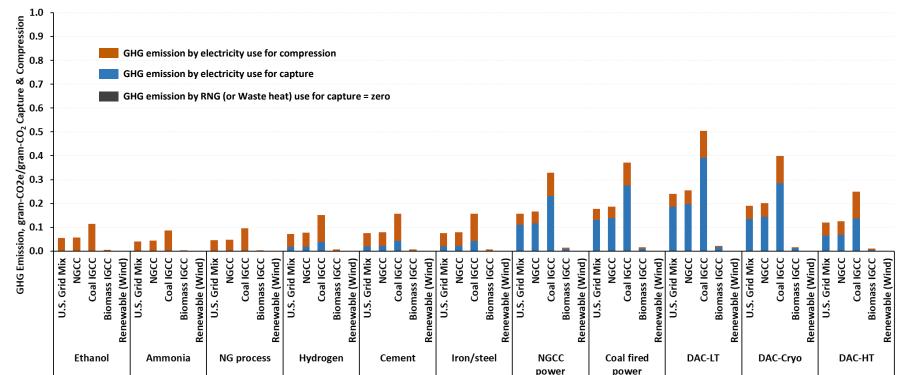
Natural Gas Demand (MJ/MT-CO2 capture)

- Using NG, GHG emission is significant
- Using RNG or waste heat, the GHG is close to zero or zero.

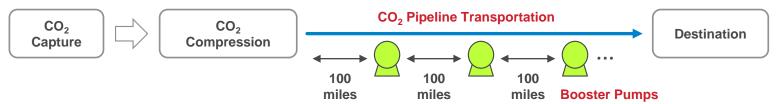


CO₂ Capture and Compression: Total Emission Burden

Different Electricity Sources with North America NG for Capture Process Heat



CO₂ Capture and Compression: Total Emission Burden

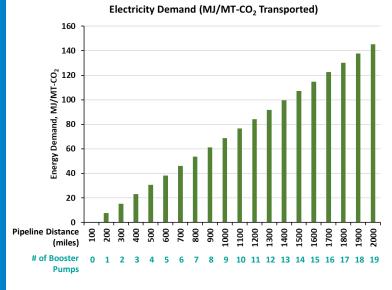

Different Electricity Sources with RNG (or Waste Heat) for Capture Process Heat

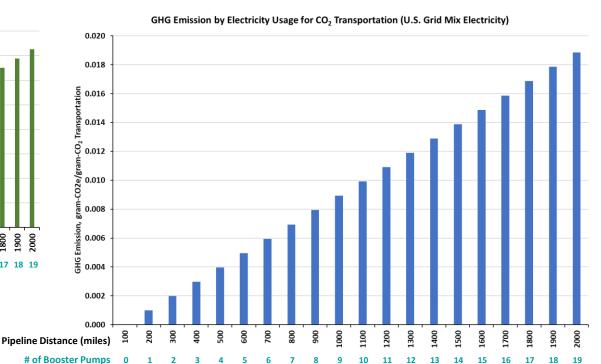
Total GHG Emission Burden by CO₂ Capture and Compresssion

CO₂ Pipeline Transportation – Electricity Demand for Booster Pumps (beyond Initial Compression)

- Electricity demand for one booster pump = 7.7 MJ/MT-CO₂
- Assumptions
 - Pump pressures from 1500 psia to 2200 psia
 - Temperature = 25°C
 - Booster pump efficiency = 75%
 - Placing boosters at every 100 miles (e.g., there will be three boosters when the pipeline distance is 400 miles)
- Default pipeline distance
 - 200 miles (i.e., one booster) for all industrial sources except DAC (zero mile)
 - A user can manually change the pipeline distance

CO₂ pipeline transportation distance


Energy requirem	ents for CO2 capture and transportation										
	Selected:	Ethanol	Ethanol	Ammonia	NG process	Hyarogen	Cement	Iron/steel	NGCC power	Coal fired power	DAC
	CO2 transportation distance (miles)		200	200	200	200	200	200	200	200	0
	Electricity for CO2 capture (MJ/MT-CO2)	0	0	0	0	138	157	158	850	1,008	1,436
	Natural gas for CO2 capture (MJ/MT-CO2)	0	0	0	0	4,454	4,441	4,459	0	0	6,750
Electricity for CO2 co	mpression at the CO2 source (MJ/MT-CO2)	420	420	318	352	420	420	420	357	357	420
Electricity for CO2 tr	ansportation (booster pumps) (MJ/MT-CO2)	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	0.0



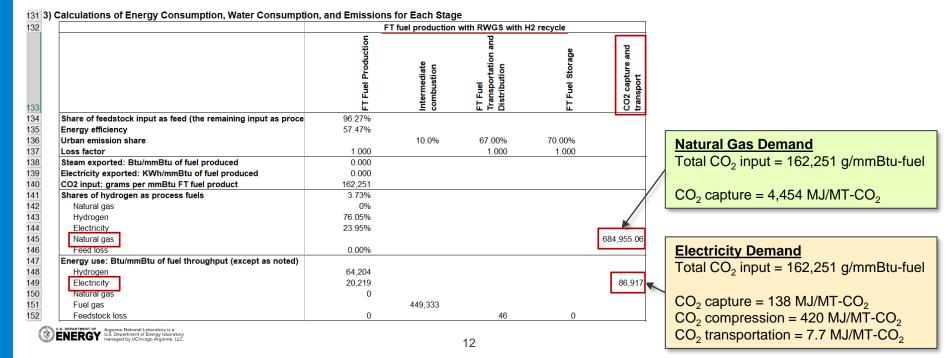
Electricity Demand and CO₂ Emission of Booster Pumps: CO₂ Pipeline Transportation

- Electricity demand is determined by the number of **booster pumps** (as a function of pipeline distance)
- GHG emission by using U.S. Grid mix
- Zero GHG emission with renewable (Wind) electricity

CO₂ booster pump work (transportation)

Pump work =
$$\frac{m \times \Delta P}{\eta \times \rho}$$

CO₂ mass compressed Pump efficiency


CO2 density

11

CO₂ Capture and Transportation Energy for Each e-fuel Pathway (CCU)

Calculation

- (CO₂ capture energy + CO₂ compression energy + CO₂ transportation energy) x (Total CO₂ input mass per mmBtu of fuel throughput)
- Unit: Btu/mmBtu of fuel throughput
- e.g., FT fuel production with RWSG with hydrogen recycle CO₂ source from the hydrogen (SMR) plant

Overview of Pathways

FT Fuel

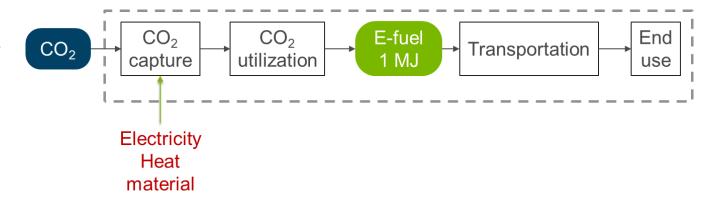
- Fischer-Tropsch reaction
- Feedstock
 - Captured CO₂
 - H2
 - Electricity

- Two pathways
 - Low conversion
 - High conversion(by integrating with nuclear)
- Product
 - Jet fuel
 - Diesel
 - Gasoline

Electro-Methanol

- Catalyzed reaction between CO and H₂
- Feedstock
 - Captured CO₂
 - $-H_2$
 - Electricity
- Product
 - Methanol

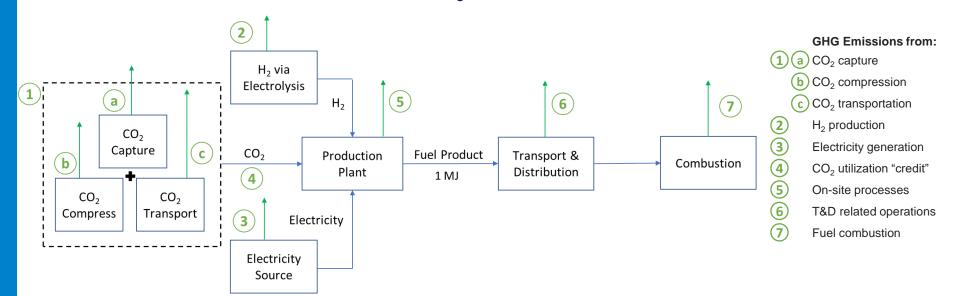
Ethanol


- Produced using gas fermentation
- Feedstock
 - Captured CO₂
 - $-H_2$
 - Electricity
- Product
 - Ethanol

GREET Methods for CO₂ Utilization

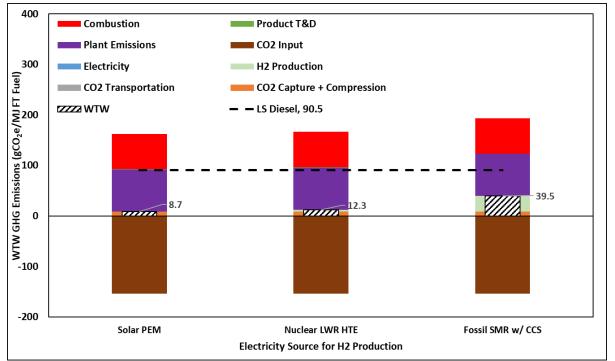
Incremental Approach

E-fuels Production Boundary



$$\begin{split} CI_{e-fuel} &= GHG_{capture} + GHG_{conversion} + GHG_{transportation} + GHG_{fuel\,use} \\ &= m_{CO_2} \times CI_{CO_2\,feedstock} + \left[\Sigma \big(X_{input} \times CI_{input} \big) + m_{unconverted\,CO_2} \right] + GHG_{transportation} + GHG_{fuel\,use} \end{split}$$

- Method: the CI of the CO₂ feedstock is estimated from the separated CO₂ capture process.
- Pros: the CI of e-fuel is defined; the upstream that releases CO2 does not need to be analyzed.
- Note: GHG credit is only issued to the CO2U facility.


General Scheme of E-fuel Pathways

- Electro- fuel : FT fuels, MeOH, EtOH
- CO₂: Industrial sources, power plant, DAC
- Electricity for CO₂ capture + compression: Grid, NG, coal, biomass, wind, nuclear
- H₂ source: solar electrolysis, nuclear electrolysis, fossil SMR
- Electricity for e-fuels production: Grid, NG, coal, biomass, wind, nuclear

FT Fuel – Low Conversion: H₂ Source Impact

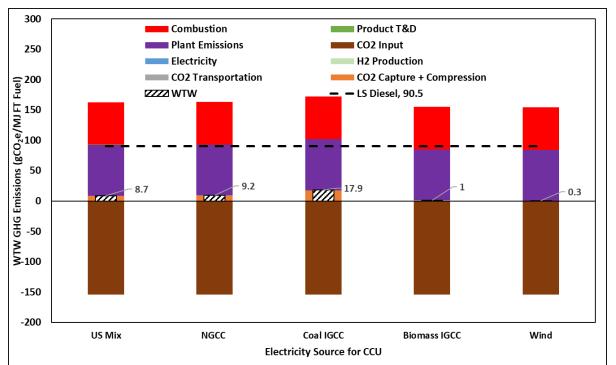
Assumptions


- CO₂ is from ethanol plant
- CO₂ capture & compression from grid electricity
- CO₂ transportation → 200 mi
 w/ grid electricity

- Collecting CO₂ from ethanol plant does not need capture unit, only needs compression.
- Using H₂ from renewable or nuclear electricity can reduce e-fuels GHG emission significantly relative to petroleum counterpart.

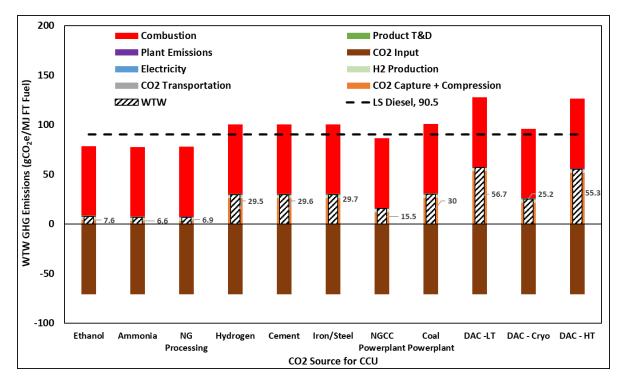
FT Fuel – Low Conversion: CO₂ Source Impact

Assumptions


- H₂ from solar/wind PEM
- Electricity for CO₂ capture & compression is from U.S. grid (except for power plant)
- The heat for CO₂ capture is from natural gas
- CO₂ transportation → 200 mi
 w/ grid electricity

 Using high purity CO₂ sources (EtOH, Ammonia, NG processing) for e- FT fuels production can reduce GHG emission by 90% relative to petroleum baseline, when low carbon H2 and electricity are used.

FT Fuel – Low Conversion: Electricity Impact

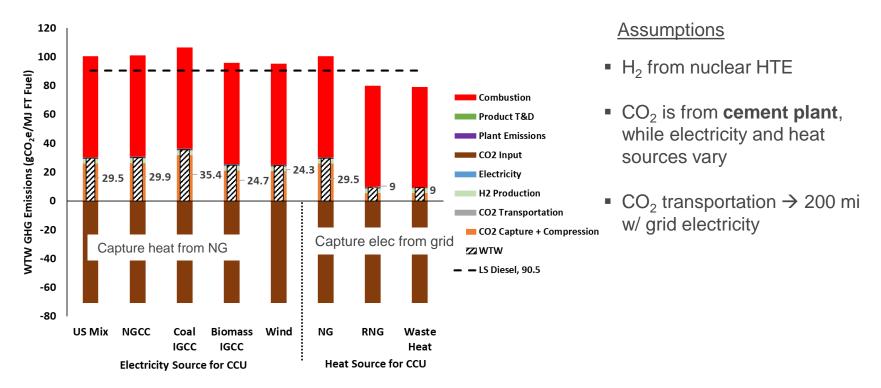

Assumptions

- H₂ from solar/wind PEM
- CO₂ is from ethanol plant, thus there is only energy consumption for compression.
- CO₂ transportation → 200 mi
 w/ grid electricity

 Excluding the electricity consumption for H₂ production, the onsite electricity consumption for FT production is relatively small, thus the impact of electricity source is not significant.

FT Fuel – High Conversion: CO₂ Source Impact

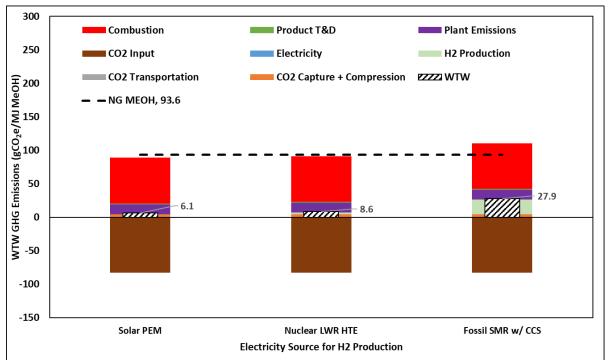
Assumptions


- H₂ from nuclear HTE
- CO₂ capture & compression from grid or powerplant electricity
- The heat for CO₂ capture is from natural gas
- CO₂ transportation → 200 mi
 w/ grid electricity

 Using high purity CO₂ sources (EtOH, Ammonia, NG processing) for e- FT fuels production can reduce GHG emission by 90% relative to petroleum baseline.

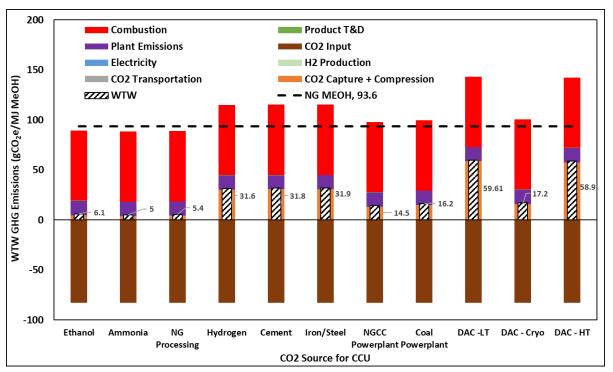


FT Fuel – High Conversion: Impact of CO2 Capture Energy Sources



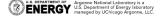
 Similarly, excluding the electricity consumption for H₂ production, the impact of electricity source on FT production emission is relatively small.

Electro - MeOH: H₂ Source Impact

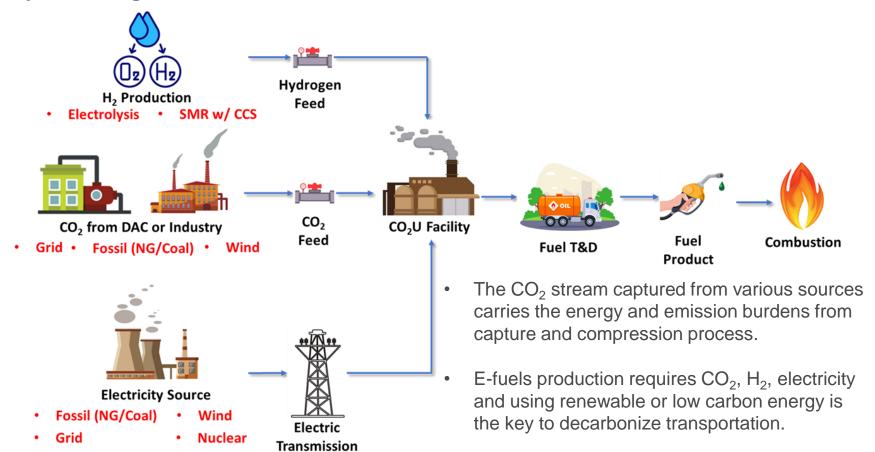

Assumptions

- CO₂ is from ethanol plant
- CO₂ capture & compression from grid electricity
- CO₂ transportation → 200 mi
 w/ grid electricity

 Using H₂ from renewable electricity or nuclear electricity is the key for e-fuels production to decarbonize transportation.


Electro - MeOH: CO₂ Source Impact

Assumptions


- H₂ from solar/wind PEM
- CO₂ capture & compression from grid or powerplant electricity
- The heat for CO₂ capture is from natural gas
- CO₂ transportation → 200 mi
 w/ grid electricity

 Using high purity CO₂ sources (EtOH, Ammonia, NG processing) for e-methanol production can reduce the GHG emission by more than 90% relative to fossil counterpart produced from NG.

Key Messages

Acknowledgement

The GREET research effort at Argonne National Laboratory was supported by the Office of Energy Efficiency and Renewable Energy (EERE) of the US Department of Energy (DOE) under contract DE-AC02-06CH11357. The views and opinions expressed herein do not necessarily state or reflect those of the US government or any agency thereof. Neither the US government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Questions?

Visit https://greet.es.anl.gov/

Key contributors: Pingping Sun, Uisung Lee, Guiyan Zhang, Clarence Ng, Kwang Hoon Baek, Peter Hua Chen, Kyuha Lee,, Adarsh Bafana, Amgad Elgowainy, Michael Wang

