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GREET CCUS Flowchart (E-fuel Tab)
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CO, Capture and Compression (Industrial CO, Sources)

= CO, purity is the key
— High-purity CO, does not require capture, but only compression stage

— CO, capture (MDEA*) and compression processes for med- and low-purity Sources () methy! diethanolamine CO, capture

CO, Capture & Compression Energy

CO, Sources Electricity Natural Gas Input Reference
(MJI/MT-CO,) (MJ/MT-CO,)

Ethanol Plant 420 0 = CO, Capture Energy

- DOE/NETL-2013/1602 (2014)
Ammonia Plant 318 0 - DOE/NETL-2015/1723 (2015)
NG Processing Plant 352 0

= CO, Compression Energy

Hydrogen (SMR) Plant 558 4454 _ GREET compression module
Cement Plant 577 4441
Iron/steel Plant 579 4459
NGCC Power Plant 1207 0
Coal Power Plant 1365 0
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CO, Capture Energy for Direct Air Capture (DAC)

DAC Technology

CO, Capture & Compression

Energy

Electricity
(MJ/MT-CO,)

Natural Gas Input
(MJI/MT-CO,)

Reference

Low temperature (LT)

: 1856 6750
adsorption
Cryogenic carbon capture 1465 0
High temperature (HT) 918 8805

absorption

= CO, Capture Energy

-Deutz and Bardow, Nature Energy vol 6, 203-213 (2021)
(DAC-LT)

-Baxter et al. GHGT-15 (2021) (DAC-Cryogenic)

-Keith et al. Joule vol 2(8), 15, 1573-1594 (2018) (DAC-HT)

= CO, Compression Energy: GREET compression module

* The energy consumption varies greatly among different DAC technologies.
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Electricity Demand and GHG Emission: CO, Capture and Compression

I Electricity demand for compression

I Electricity demand for capture

Electricity Demand (MJ/MT-CO2 capture)
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CO, compression work

Compression work = <
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m CO, mass rate

P Pressure

n Compressor efficiency
p CO, density
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Universal gas constant
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CO, molecular weight
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GHG Emission, gram-CO2e/gram-CO, Capture

» GHG emission by electricity sources
Coal > NGCC > U.S Grid Mix >> Biomass IGCC
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GHG Emission by Electricity Usage for CO, Capture and Compresssion: Differnent Electricity Sources

I GHG emission by electricity use for compression

I GHG emission by electricity use for capture
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Heat Demand and GHG Emission: CO, Capture

= Natural gas for CO, capture from: = Using NG, GHG emission is significant
— Hydrogen SMR = Using RNG or waste heat, the GHG is close to zero or zero.
— Cement
— lIron/Steel
— DAC (LT) GHG Emission from Heat Supply to CO, Capture: Different Heating Sources
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Ission Burden

Total Em

Different Electricity Sources with North America NG for Capture Process Heat

CO, Capture and Compression

ol

Total GHG Emission Burden by CO, Capture and Compresssion

Il GHG emission by NG use for capture (North America NG)

111 T

I GHG emission by electricity use for compression
I GHG emission by electricity use for capture
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Burden

Ission

Total Em

Different Electricity Sources with RNG (or Waste Heat) for Capture Process Heat

CO, Capture and Compression

Total GHG Emission Burden by CO, Capture and Compresssion

I GHG emission by electricity use for compression
I GHG emission by electricity use for capture

zero

I GHG emission by RNG (or Waste heat) use for capture
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CO, Pipeline Transportation — Electricity Demand for Booster Pumps
(beyond Initial Compression)

CO, co, CO, Pipeline Transportation o
i > Destination
Capture Compression

100 100 100
miles miles miles Booster Pumps

= Electricity demand for one booster pump = 7.7 MJ/MT-CO,
= Assumptions
— Pump pressures from 1500 psia to 2200 psia
— Temperature = 25°C
— Booster pump efficiency = 75%
— Placing boosters at every 100 miles (e.g., there will be three boosters when the pipeline distance is 400 miles)
= Default pipeline distance
— 200 miles (i.e., one booster) for all industrial sources except DAC (zero mile)
— Auser can manually change the pipeline distance CO, pipeline transportation distance

Energy requirements for CO2 capture and transportation

Selecied. Ethanol Ethanol Ammenia NG process Hﬂfmﬁn Cement lron/steel NGCC power _Coal fired power DAC

| C02 transportation distance (miles) 200 200 200 200 200 200 200 200 0
Electricity for CO2 capture (MJ/MT-CO2) 0 0 0 0 138 157 158 850 1,008 1,436

Natural gas for CO2 capture (MJ/MT-C02)[" 0 0 0 0 4,454 4,441 4,459 0 0 6,750

Electricity for CO2 comoression af the CO2 source (MIMT-CO 420 420 318 352 420 420 420 357 357 420
Electricity ftlr CO2 transEDrtatian (booster pumps) (W!MT—COQ? 77 77 77 77 77 77 77 77 77 0.0

Electricity demand for booster pump(s) Argonne0\75
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ZIENERGY Ui S sy ey




Electricity Demand and CO, Emission of Booster Pumps:
CO, Pipeline Transportation

= Electricity demand is determined by the number of = GHG emission by using U.S. Grid mix

booster pumps (as a function of pipeline distance) = Zero GHG emission with renewable (Wind) electricity

Electricity Demand (M)/MT-CO, Transported) GHG Emission by Electricity Usage for CO, Transportation (U.S. Grid Mix Electricity)
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CO, Capture and Transportation Energy for Each e-fuel Pathway (CCU)
= Calculation
— (CO, capture energy + CO, compression energy + CO, transportation energy) x (Total CO, input mass per mmBtu of fuel throughput)

— Unit: Btu/mmBtu of fuel throughput

= e.g., FT fuel production with RWSG with hydrogen recycle - CO, source from the hydrogen (SMR) plant

131 3) Calculations of Energy Consumption, Water Consumption, and Emissions for Each Stage
132 FT fuel production with RWGS with H2 recycle
s g 1,
S £ = g
- L] c g = E L
2 |5 % 5 2 5
o T B ts @ gt
B [ T 23 T g8
=] E a S @ s =] o
[ 3 E Lo [ o g
133 [ £3 EEa m o £
134 Share of feedstock input as feed (the remaining input as proce 96.27%
135 Energy efficiency 57 47%
136 Urban emission share 10.0% 67.00% 70.00%
137 Loss factor 1.000 1.000 1.000 Natu ral Gas Demand
138 Steam exported: Btu/mmBtu of fuel produced 0.000 Total C02 Input =162,251 g/mthU'fuel
139 Electricity exported: KWh/mmBtu of fuel produced 0.000
140 CO2 input: grams per mmBtu FT fuel product 162,251
141 Shares of hydrogen as process fuels 3.73% C02 Capture = 4,454 |\/L]/|\/|-|--CO2
142 Natural gas 0%
143 Hydrogen 76.05%
144 Electrici 23.95% 1
145 684,955.06
133 E oy Use. Btu/mmBtu of fuel th hput ( t ted) 20 | EIeCt”CItv Demand
nergy use: Btu/mmBtu of fuel throughput (except as note N —
148 Hydrogen 64.204 | Total CO, input = 162,251 g/mmBtu-fuel
149 20219 | 8.917|w_|
150 Natural gas 0 |
151 Fuel gas 449,333 COZ Capture =138 MJ/MT'COZ
e Feedstock loss 0 4 0 CO, compression = 420 MJ/MT-CO,
7%, v DESARTMENT OF  Argonne National Labor i =
(BJENERGY 5 sy CO, transportation = 7.7 MJ/MT-CO,,
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Overview of Pathways

FT Fuel Electro-Methanol Ethanol

Fischer-Tropsch reaction = (Catalyzed reaction Produced using gas

u Feedstock between CcO and H2 fermenta‘“()n

— Captured CO,

— H2 = Feedstock = Feedstock

— Electricity = =5~ f’r/‘i‘ AA — Captured CO, — Captured CO,
= Two pathways - H, — H,

— Low conversion — Electricity — Electricity

— High conversion

(by integrating with nuclear) = Product = Product

= Product — Methanol — Ethanol

— Jet fuel

— Diesel

— Gasoline

) ENERGY 75y vl 13 Argonne & |75




GREET Methods for CO, Utilization
Incremental Approach

CO, CO,
capture utilization

E-fuels Production
Boundary

Electricity
Heat
material

Cle—fuel = GHGcapture + GHGconversion + GHGtransportation + GHGfuel use

= Mco, X CICOZ feedstock + [Z(Xinput X Clinput) + Mynconverted COZ] + GHGtransportation + GHGfuel use

= Method: the CI of the CO, feedstock is estimated from the separated CO, capture process.
» Pros: the CI of e-fuel is defined; the upstream that releases CO2 does not need to be analyzed.
= Note: GHG credit is only issued to the CO2U facility.

) ENERGY 75y vl 1 Argonne & |75




General Scheme of E-fuel Pathways

@ |

GHG Emissions from:

. @@ CO, capture
H, via .
( ).‘ """""""""" i | Electrolysis @ CO, compression
: @ : H, @ @ @ @ CO, transportation
I I
! ! H, production
! co, ! v @ 2P
Electricity generation

: @ Capture i CO, Production Fuel Product | Transport & Combustion ® ”yg. .
| + : @ Plant 1M Distribution @ CO, utilization “credit
| | .
! co, co, ! ry @ On-site processes
i | Compress Transport | | . @ T&D related operations
' | @ Electricity
I I @ Fuel combustion

I

Electricity
Source

» Electro- fuel : FT fuels, MeOH, EtOH

= CO, : Industrial sources, power plant, DAC
= Electricity for CO, capture + compression: Grid, NG, coal, biomass, wind, nuclear
» H, source: solar electrolysis, nuclear electrolysis, fossil SMR

» Electricity for e-fuels production: Grid, NG, coal, biomass, wind, nuclear

15 Argonne & 75




FT Fuel — Low Conversion: H, Source Impact

400 mmmm Combustion s Product T&D Assumptions
m Plant Emissions s CO2 Input
300 | mwmm Electricity H2 Production n COZ is from ethanol p|ant
CO2 Transportation [ CO2 Capture + Compression
200 | EZ2WTW = 15 Diesel, 905 = CO, capture & compression

from grid electricity

g

= CO, transportation = 200 mi
w/ grid electricity

WTW GHG Emissions (gCO,e/MJ FT Fuel)

__—1
0 7777

-100

-200

Solar PEM Nuclear LWR HTE Fossil SMR w/ CCS
Electricity Source for H2 Production

= Collecting CO, from ethanol plant does not need capture unit, only needs compression.

= Using H, from renewable or nuclear electricity can reduce e-fuels GHG emission significantly relative
to petroleum counterpart.

(@ BNERGY [T S " Argonne & 75




FT Fuel — Low Conversion: CO, Source Impact

WTW GHG Emissions (gCO,e/MJ FT Fuel)

350

250

150

50

-50

-150

-250

mmm Combustion
I Plant Emissions
m Electricity

CO2 Transportation
ZZZAWTW

s Product T&D
N CO2 Input
H2 Production
[ CO2 Capture + Compression
= == S Diesel, 90.5

w

107

103 56.4 56.6
. 27.5
4.8 3.7 4.1 é 24,

Ethanol Ammonia NG

Processing

Hydrogen

Cement  Iron/Steel NGCC Coal
Powerplant Powerplant
CO2 Source for CCU

DAC-LT DAC-Cryo DAC-HT

Assumptions

= H, from solar/wind PEM

= Electricity for CO, capture &
compression is from U.S. grid
(except for power plant)

» The heat for CO, capture is
from natural gas

= CO, transportation - 200 mi
w/ grid electricity

= Using high purity CO, sources (EtOH, Ammonia, NG processing) for e- FT fuels production can reduce
GHG emission by 90% relative to petroleum baseline, when low carbon H2 and electricity are used.

;’-"\ U.S. DEPARTMENT OF _ Argonne National Lal wory is a
LEJENERGY 230y Sron s
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FT Fuel — Low Conversion: Electricity Impact

300

50

WTW GHG Emissions (gCO,e/MJ FT Fuel)
g o

=
[=]
o

=
[
o

-200

mmm Combustion s Product T&D
I Plant Emissions I CO2 Input
[ Electricity H2 Production
CO2 Transportation s CO2 Capture + Compression
WTW = = |S Diesel, 90.5
| E | HH’ Il |

US Mix NGCC Coal IGCC Biomass IGCC Wind
Electricity Source for CCU

Assumptions

= H, from solar/wind PEM

= CO, is from ethanol plant,
thus there is only energy
consumption for compression.

= CO, transportation - 200 mi
w/ grid electricity

= Excluding the electricity consumption for H, production, the onsite electricity consumption for
FT production is relatively small, thus the impact of electricity source is not significant.

18
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FT Fuel — High Conversion: CO, Source Impact

200 I Combustion s Product T&D ASSU mptlons
I Plant Emissions I CO2 Input

150 [ Electricity H2 Production = H2 from nUCIGar HTE
E CO2 Transportation [ CO2 Capture + Compression
£ ez T = TloDlesel 505 = CO, capture & compression
= 100 .
S| === -——- - - - - - - --F- from grid or powerplant
g electricity
é 50 g
E ¥ 205 20.6 29.7 ? 30 fﬁ 367 ° u The heat for CO Capture iS
§ 7 2 0 b 2
° o 26 Z-ce Fg-eo Z v 7 from natural gas
G}
=
® s = CO, transportation = 200 mi

w/ grid electricity
-100
Ethanol Ammonia NG Hydrogen Cement Iron/Steel NGCC Coal DAC-LT DAC-Cryo DAC-HT
Processing Powerplant Powerplant
CO2 Source for CCU

= Using high purity CO, sources (EtOH, Ammonia, NG processing) for e- FT fuels production
can reduce GHG emission by 90% relative to petroleum baseline.

@ BRERGY T 1o Argonne & 75




FT Fuel — High Conversion: Impact of CO2 Capture Energy Sources

120 Assumptions
100
- --B--B--3-m--B------ = H, from nuclear HTE
< 80
E s Combustion .
3 60 s Product T&D = CO, is from cement plant,
g‘ 20 mmm Plant Emissions while eleCtriCity and heat
& . ; s CO2 Input sources vary
0 I 7
g 20 29.5 g 29.9 35.4 247 24.3 % 29.5 . , [ Electricity
@ / ] H2 Production . .
2 o < — o wn ™ CO, transportation > 200 mi
% -20 Capture elec from grid mm CO2 Capture + Compression W/ grld eleCtrICIty
= Capture heat from NG i
S

: ZIWTW
-40 :

= == LS Diesel, 90.5
-60

-80
US Mix NGCC Coal Biomass Wind | NG RNG Waste
IGCC IGCC Heat
Electricity Source for CCU ’ Heat Source for CCU

= Similarly, excluding the electricity consumption for H, production, the impact of electricity source on
FT production emission is relatively small.

;’-"\ U3 DEPARTMENT OF _ Argonne National Labaratory is a
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Electro - MeOH: H, Source Impact

30 s Combustion s Product T&D I Plant Emissions ASSU m Dtl ons
250 = CO2 Input mm Electricity H2 Production n C02 is from ethanol p|ant
200 CO2 Transportation I CO2 Capture + Compression WTW
— —NG MEOH, 93.6 = CO, capture & compression

[y
[%a)
[=]

from grid electricity

g

= CO, transportation - 200 mi
w/ grid electricity

(%]
(=]

(=]

WTW GHG Emissions (gCO,e/MJ MeOH)
o
=]

=
[=]
o

-150
Solar PEM Nuclear LWR HTE Fossil SMR w/ CCS

Electricity Source for H2 Production

= Using H, from renewable electricity or nuclear electricity is the key for e-fuels production
to decarbonize transportation.

3’-"\ U.5. DEPARTMENT OF _ Argonne National atory s a
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Electro - MeOH: CO, Source Impact

200 Assumptions
mmm Combustion s Product T&D
I Plant Emissions . CO2 Input - H
150 mmm Electricity H2 Production H2 from SOIar/WInd PEM
T CO2 Transportation [ CO2 Capture + Compression
g EZZZIWTW = = NG MEOH, 93.6 = CO, capture & compression
Swo | _________ _ _ _ _ __B__m__ from grid or powerplant
8.: electricity
g 50 g _
3 . =+ B ks | = The heat for CO, capture is
e 316 31.8 . 162 ﬂ a
g . s B 5 105 7 % from natural gas
:
S = CO, transportation - 200 mi
0 w/ grid electricity
-100
Ethanol Ammonia NG Hydrogen Cement Iron/Steel NGCC Coal DAC-LT DAC-Cryo DAC-HT
Processing Powerplant Powerplant
CO2 Source for CCU

= Using high purity CO, sources (EtOH, Ammonia, NG processing) for e-methanol production can
reduce the GHG emission by more than 90% relative to fossil counterpart produced from NG.

22 Argonne & 75




Key Messages

H, Production Feed
* Electrolysis * SMR w/ CCS

e —

CO, from DAC or Industry co,
- Grid + Fossil (NG/Coal) + Wind  Feed ? Fuel T&D Fuel Combustion
Product
o + The CO, stream captured from various sources
® - carries the energy and emission burdens from
ll:‘-r: capture and compression process.
: @ — —_— . . ..
- j + E-fuels production requires CO,, H,, electricity
Electricity Source and using renewable or low carbon energy is
*  Fossil (NG/Coal) + Wind . .
) Electric the key to decarbonize transportation.
Grid Nuclear Transmission
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Questions?

Visit https://greet.es.anl.gov/
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