

Fuel Choices for Fuel-Cell Vehicles: Wellto-Wheels Energy and Emission Impacts

Michael Wang Center for Transportation Research Argonne National Laboratory

> 2002 Fuel Cell Seminar Palm Springs, California Nov. 18-21, 2002

WTW Analysis Is a Complete Energy/Emissions Comparison

As an example, greenhouse gases are illustrated here

- Argonne National Laboratory (ANL) U.S. Study, 2002
- GM European (GM EU) study, 2002
- A.D. Little (ADL) U.S. study, 2002
- German Julich Research Center German Study, 2001
- GM North American study, 2001
- University of Tokyo Japanese, 2001
- MIT U.S. study, 2000

WTW Energy Use Changes from Seven Completed Studies

WTW GHG Emissions Changes from Seven Completed Studies

The GREET (*G*reenhouse gases, *R*egulated *E*missions, and *E*nergy use in *T*ransportation) Model

GREET includes emissions of greenhouse gases

- CO₂, CH₄, and N₂O
- VOC, CO, and NO_x as optional GHGs

GREET estimates emissions of five criteria pollutants

- Total and urban separately
- VOC, CO, NO_x, PM₁₀, and SO_x

GREET separates energy use into

- All energy sources
- Fossil fuels (petroleum, natural gas, and coal)
- Petroleum
- The GREET model and Its documents are available at http://greet.anl.gov; there are 640 registered GREET users

Details of This Presentation Is in the Paper Published in <u>Journal of Power Sources</u>

Journal of Power Sources 112 (2002) 307-321

www.elsevier.com/locate/jpowsour

Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts

Michael Wang*

Center for Transportation Research, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

Received 29 June 2002; accepted 21 July 2002

Argonne Evaluated These Fuel Production Pathways in This Study

Feedstock	Fuel
Petroleum	30-ppm gasoline; 10-ppm gasoline;
	15-ppm diesel; naphtha
Natural gas	Central G.H2; station G.H2;
	central L.H2; station L.H2;
	methanol; compressed NG
U.S. electricity	G.H2; L.H2 (station production)
Renewable electricity	G.H2; L.H2 (station production)
Solar energy	G.H2; L.H2 (central production)
Cellulosic biomass	Ethanol

Production and Compression Are Key Steps for Centralized G.H₂ Pathways

HANSFORTATION RESEARCH H₂ Liquefaction Has Higher Energy Losses Than H₂ Compression

Station H₂ Production Lacks Energy Benefits from Co-Products

Ethanol Pathways Include activities from Fertilizer to Ethanol at Stations

In Summary, WTP Energy Losses Could Penalize Overall FCV Efficiencies

Fuel Economy Ratios of FCVs and HEVs (Relative to GVs)

Some FCV Pathways Could Increase Per-Mile *Total Energy Use*, But

Increases in Per-Mile <u>Fossil Energy Use</u> Are Smaller

Only the Two <u>*U.S. Mix*</u> Electrolysis H₂ Pathways Increase GHG Emissions

Conclusions

- Well-to-wheels analysis helps identify fuels and fuel production pathways for energy and environmental benefits
- Different fuels for fuel-cell vehicle applications can have significantly different energy use, oil use, and GHG emission implications
- All advanced vehicle pathways reduce oil use
- Most, but not all, of the fuel-cell vehicle/fuel combinations being considered achieve significant energy and GHG emission benefits